Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Richard D. Brauer
HTML articles powered by AMS MathViewer

by Walter Feit PDF
Bull. Amer. Math. Soc. 1 (1979), 1-20
References
    [A] H. Aramata, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proceedings of the Imperial Acad, of Japan 9 (1933), 31-34. [BGG] I. N. Bernstein, I. M. Gelfand and S. L Gelfand, Category of g modules, Functional Analysis and its Applications 10 (1976), 87-92. [Bl] H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, III., 1917. [Bu1] W. Burnside, On a class of groups of finite order, Transactions of the Cambridge Philos. Soc. 18 (1900), 269-276. [Bu2] W. Burnside, Theory of groups of finite order 2nd ed., Cambridge Univ. Press, London and New York, 1911.
  • E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20–48. MR 200355, DOI 10.2307/1970529
  • [Di] L. E. Dickson, Algebras and their arithmetics, Univ. of Chicago Press, Chicago, III., 1923.
  • Walter Feit and John G. Thompson, Groups which have a faithful representation of degree less than $(p-1/2)$, Pacific J. Math. 11 (1961), 1257–1262. MR 133373, DOI 10.2140/pjm.1961.11.1257
  • Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
  • Ferdinand Georg Frobenius, Gesammelte Abhandlungen. Bände I, II, III, Springer-Verlag, Berlin-New York, 1968 (German). Herausgegeben von J.-P. Serre. MR 0235974
  • George Glauberman, On groups with a quaternion Sylow $2$-subgroup, Illinois J. Math. 18 (1974), 60–65. MR 332969
  • J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1958/59), 430–445. MR 131454, DOI 10.1007/BF01558601
  • J. A. Green, Blocks of modular representations, Math. Z. 79 (1962), 100–115. MR 141717, DOI 10.1007/BF01193108
  • Helmut Hasse, Über $\wp$-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann. 104 (1931), no. 1, 495–534 (German). MR 1512683, DOI 10.1007/BF01457954
  • [K] B. Kaufman, Crystal statistics, II, Partition junction evaluated by Spinor analysis, Phys. Rev. 76 (1949), 1232-1243, [K-O] B. Kaufman and L. Onsager, Crystal statistics. III, Short range order in a binary Eising lattice, Phys. Rev. 76 (1949), 1244-1252.
  • Heinrich Maschke, Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), no. 4, 492–498 (German). MR 1511011, DOI 10.1007/BF01444297
  • Hirosi Nagao, A proof of Brauer’s theorem on generalized decomposition numbers, Nagoya Math. J. 22 (1963), 73–77. MR 153753, DOI 10.1017/S0027763000011041
  • Masaru Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175–188. MR 78364
  • Peter Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe. Mit Anwendungen auf die Bestimmung des minimalen Darstellungskörpers einer endlichen Gruppe und in der Theorie der Artinschen $L$-Funktionen, J. Reine Angew. Math. 190 (1952), 148–168 (German). MR 53943, DOI 10.1515/crll.1952.190.148
  • [Sc] I. Schur, Collected works, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
  • Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
  • John G. Thompson, Normal $p$-complements for finite groups, Math. Z 72 (1959/1960), 332–354. MR 0117289, DOI 10.1007/BF01162958
  • John G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1–6. MR 207863, DOI 10.1016/0021-8693(67)90009-9
  • Shianghaw Wang, A counter-example to Grunwald’s theorem, Ann. of Math. (2) 49 (1948), 1008–1009. MR 26992, DOI 10.2307/1969410
  • Shianghaw Wang, On Grunwald’s theorem, Ann. of Math. (2) 51 (1950), 471–484. MR 33801, DOI 10.2307/1969335
  • Hermann Weyl, Generalized Riemann matrices and factor sets, Ann. of Math. (2) 37 (1936), no. 3, 709–745. MR 1503306, DOI 10.2307/1968485
  • Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
  • [Z] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Seminar, Hamburg Univ. 11 (1936), 17-40,
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 01A07
  • Retrieve articles in all journals with MSC (1970): 01A07
Additional Information
  • Journal: Bull. Amer. Math. Soc. 1 (1979), 1-20
  • MSC (1970): Primary 01A07
  • DOI: https://doi.org/10.1090/S0273-0979-1979-14547-6
  • MathSciNet review: 513747