Richard D. Brauer
HTML articles powered by AMS MathViewer
- by Walter Feit PDF
- Bull. Amer. Math. Soc. 1 (1979), 1-20
References
-
[A] H. Aramata, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proceedings of the Imperial Acad, of Japan 9 (1933), 31-34.
[BGG] I. N. Bernstein, I. M. Gelfand and S. L Gelfand, Category of g modules, Functional Analysis and its Applications 10 (1976), 87-92.
[Bl] H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, III., 1917.
[Bu1] W. Burnside, On a class of groups of finite order, Transactions of the Cambridge Philos. Soc. 18 (1900), 269-276.
[Bu2] W. Burnside, Theory of groups of finite order 2nd ed., Cambridge Univ. Press, London and New York, 1911.
- E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20–48. MR 200355, DOI 10.2307/1970529 [Di] L. E. Dickson, Algebras and their arithmetics, Univ. of Chicago Press, Chicago, III., 1923.
- Walter Feit and John G. Thompson, Groups which have a faithful representation of degree less than $(p-1/2)$, Pacific J. Math. 11 (1961), 1257–1262. MR 133373, DOI 10.2140/pjm.1961.11.1257
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
- Ferdinand Georg Frobenius, Gesammelte Abhandlungen. Bände I, II, III, Springer-Verlag, Berlin-New York, 1968 (German). Herausgegeben von J.-P. Serre. MR 0235974
- George Glauberman, On groups with a quaternion Sylow $2$-subgroup, Illinois J. Math. 18 (1974), 60–65. MR 332969
- J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1958/59), 430–445. MR 131454, DOI 10.1007/BF01558601
- J. A. Green, Blocks of modular representations, Math. Z. 79 (1962), 100–115. MR 141717, DOI 10.1007/BF01193108
- Helmut Hasse, Über $\wp$-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann. 104 (1931), no. 1, 495–534 (German). MR 1512683, DOI 10.1007/BF01457954 [K] B. Kaufman, Crystal statistics, II, Partition junction evaluated by Spinor analysis, Phys. Rev. 76 (1949), 1232-1243, [K-O] B. Kaufman and L. Onsager, Crystal statistics. III, Short range order in a binary Eising lattice, Phys. Rev. 76 (1949), 1244-1252.
- Heinrich Maschke, Ueber den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), no. 4, 492–498 (German). MR 1511011, DOI 10.1007/BF01444297
- Hirosi Nagao, A proof of Brauer’s theorem on generalized decomposition numbers, Nagoya Math. J. 22 (1963), 73–77. MR 153753, DOI 10.1017/S0027763000011041
- Masaru Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175–188. MR 78364
- Peter Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe. Mit Anwendungen auf die Bestimmung des minimalen Darstellungskörpers einer endlichen Gruppe und in der Theorie der Artinschen $L$-Funktionen, J. Reine Angew. Math. 190 (1952), 148–168 (German). MR 53943, DOI 10.1515/crll.1952.190.148 [Sc] I. Schur, Collected works, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
- John G. Thompson, Normal $p$-complements for finite groups, Math. Z 72 (1959/1960), 332–354. MR 0117289, DOI 10.1007/BF01162958
- John G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1–6. MR 207863, DOI 10.1016/0021-8693(67)90009-9
- Shianghaw Wang, A counter-example to Grunwald’s theorem, Ann. of Math. (2) 49 (1948), 1008–1009. MR 26992, DOI 10.2307/1969410
- Shianghaw Wang, On Grunwald’s theorem, Ann. of Math. (2) 51 (1950), 471–484. MR 33801, DOI 10.2307/1969335
- Hermann Weyl, Generalized Riemann matrices and factor sets, Ann. of Math. (2) 37 (1936), no. 3, 709–745. MR 1503306, DOI 10.2307/1968485
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158 [Z] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Seminar, Hamburg Univ. 11 (1936), 17-40,
Additional Information
- Journal: Bull. Amer. Math. Soc. 1 (1979), 1-20
- MSC (1970): Primary 01A07
- DOI: https://doi.org/10.1090/S0273-0979-1979-14547-6
- MathSciNet review: 513747