The classification of finite simple groups I. Simple groups and local analysis
HTML articles powered by AMS MathViewer
- by Daniel Gorenstein PDF
- Bull. Amer. Math. Soc. 1 (1979), 43-199
References
- J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222–241. MR 215913, DOI 10.1016/0021-8693(67)90005-1 2. J. L. Alperin, Sylow 2-subgroups of rank 3, Gainesville conference, pp. 3-5 (cf. 170).
- J. L. Alperin, Richard Brauer, and Daniel Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow $2$-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1–261. MR 284499, DOI 10.1090/S0002-9947-1970-0284499-5
- J. L. Alperin, Richard Brauer, and Daniel Gorenstein, Finite simple groups of $2$-rank two, Scripta Math. 29 (1973), no. 3-4, 191–214. MR 401902
- J. L. Alperin and Daniel Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc. 17 (1966), 515–519. MR 193141, DOI 10.1090/S0002-9939-1966-0193141-8
- Michael Aschbacher, Finite groups with a proper $2$-generated core, Trans. Amer. Math. Soc. 197 (1974), 87–112. MR 364427, DOI 10.1090/S0002-9947-1974-0364427-8
- Michael Aschbacher, On finite groups generated by odd transpositions. I, Math. Z. 127 (1972), 45–56. MR 310058, DOI 10.1007/BF01110103
- Michael Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975), 87–115. MR 376843
- Michael Aschbacher, Tightly embedded subgroups of finite groups, J. Algebra 42 (1976), no. 1, 85–101. MR 422400, DOI 10.1016/0021-8693(76)90028-4
- Michael Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann. of Math. (2) 106 (1977), no. 2, 353–398. MR 498828, DOI 10.2307/1971100
- Michael Aschbacher, On the failure of the Thompson factorization in $2$-constrained groups, Proc. London Math. Soc. (3) 43 (1981), no. 3, 425–449. MR 635564, DOI 10.1112/plms/s3-43.3.425
- Michael Aschbacher, On the failure of the Thompson factorization in $2$-constrained groups, Proc. London Math. Soc. (3) 43 (1981), no. 3, 425–449. MR 635564, DOI 10.1112/plms/s3-43.3.425
- Michael Aschbacher, A pushing up theorem for characteristic $2$ type groups, Illinois J. Math. 22 (1978), no. 1, 108–125. MR 470063 14. M. Aschbacher, A variation of the C (G; T) theorem for 2-constrained groups (to appear).
- Michael Aschbacher and Gary M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1–91. MR 422401, DOI 10.1017/S0027763000017438
- Michael Aschbacher and Gray M. Seitz, On groups with a standard component of known type, Osaka Math. J. 13 (1976), no. 3, 439–482. MR 435200 17. B. Baumann, Über endliche Gruppen mit einer zu L2 (2) isomorphen Faktorgruppe (to appear).
- Helmut Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Z. 104 (1968), 175–204 (German). MR 227261, DOI 10.1007/BF01110287
- Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527–554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
- Helmut Bender, On groups with abelian Sylow $2$-subgroups, Math. Z. 117 (1970), 164–176. MR 288180, DOI 10.1007/BF01109839
- Helmut Bender, On the uniqueness theorem, Illinois J. Math. 14 (1970), 376–384. MR 262351 22. H. Bender, Goldschmidt’s 2-signalizer functor theorem, Israel J. Math. 22 (1975), 208-213. 23. H. Bender, On groups with dihedral Sylow 2-subgroups (to appear).
- N. Blackburn, On a special class of $p$-groups, Acta Math. 100 (1958), 45–92. MR 102558, DOI 10.1007/BF02559602
- Norman Blackburn, Generalizations of certain elementary theorems on $p$-groups, Proc. London Math. Soc. (3) 11 (1961), 1–22. MR 122876, DOI 10.1112/plms/s3-11.1.1
- A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95–104 (French). MR 294349, DOI 10.1007/BF01404653
- Richard Brauer, On the structure of groups of finite order, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 209–217. MR 0095203
- Richard Brauer, On finite Desarguesian planes. I, Math. Z. 90 (1965), 117–123. MR 193152, DOI 10.1007/BF01112235
- Richard Brauer, Some applications of the theory of blocks of characters of finite groups. I, J. Algebra 1 (1964), 152–167. MR 168662, DOI 10.1016/0021-8693(64)90031-6
- Richard Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565–583. MR 74414, DOI 10.2307/1970080
- Richard Brauer and Chih-han Sah (eds.), Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0240186
- Richard Brauer and Michio Suzuki, On finite groups of even order whose $2$-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757–1759. MR 109846, DOI 10.1073/pnas.45.12.1757
- R. Brauer, Michio Suzuki, and G. E. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois J. Math. 2 (1958), 718–745. MR 104734, DOI 10.1215/ijm/1255448336
- N. Burgoyne, Finite groups with Chevalley-type components, Pacific J. Math. 72 (1977), no. 2, 341–350. MR 457550, DOI 10.2140/pjm.1977.72.341 35. N. Burgoyne, Elements of order 3 in Chevalley groups of characteristic 2 (unpublished).
- N. Burgoyne and P. Fong, The Schur multipliers of the Mathieu groups, Nagoya Math. J. 27 (1966), 733–745. MR 197542, DOI 10.1017/S0027763000026519 37. M. Burgoyne and C. Williamson, Centralizers of involutions in Chevalley groups of odd characteristic (to appear). 38. M. Burgoyne and C. Williamson, Semisimple classes in Chevalley groups (to appear). 39. R. Carmichael, Introduction to the theory of groups of finite order, Ginn, Boston and New York, 1937.
- Roger Carter and Paul Fong, The Sylow $2$-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151. MR 166271, DOI 10.1016/0021-8693(64)90030-4
- C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66 (French). MR 73602, DOI 10.2748/tmj/1178245104
- J. H. Conway, A group of order $8,315,553,613,086,720,000$, Bull. London Math. Soc. 1 (1969), 79–88. MR 248216, DOI 10.1112/blms/1.1.79
- J. H. Conway, Three lectures on exceptional groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 215–247. MR 0338152
- J. H. Conway and D. B. Wales, Construction of the Rudvalis group of order $145,\,926,\,144,\,000$, J. Algebra 27 (1973), 538–548. MR 335620, DOI 10.1016/0021-8693(73)90063-X
- Bruce N. Cooperstein, An enemies list for factorization theorems, Comm. Algebra 6 (1978), no. 12, 1239–1288. MR 499351, DOI 10.1080/00927877808822291 46. B. Cooperstein and G. Mason, Some questions concerning the representation of Chevalley groups of characteristic 2 (to appear).
- Charles W. Curtis, Central extensions of groups of Lie type, J. Reine Angew. Math. 220 (1965), 174–185. MR 188299, DOI 10.1515/crll.1965.220.174
- P. Dembowski and A. Wagner, Some characterizations of finite projective spaces, Arch. Math. 11 (1960), 465–469. MR 143095, DOI 10.1007/BF01236976
- Ulrich Dempwolff, On extensions of an elementary abelian group of order $2^{5}$ by $\textrm {GL}(5,\,2)$, Rend. Sem. Mat. Univ. Padova 48 (1972), 359–364 (1973). MR 393276 50. A. Dodd and B. Eckmann, Seminar on algebraic groups and related finite groups, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1970. 51. A. Dodd and B. Eckmann, Proceedings of Second International Conference on the Theory of Groups, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1973.
- Walter Feit, On a class of doubly transitive permutation groups, Illinois J. Math. 4 (1960), 170–186. MR 113953 53. W. Feit, A characterization of the simple groups SL (2, 2a), Amer. J. Math. 82 (1960), 281-300; correction, 84 (1962), 201-204.
- Walter Feit, On integral representations of finite groups, Proc. London Math. Soc. (3) 29 (1974), 633–683. MR 374248, DOI 10.1112/plms/s3-29.4.633
- Walter Feit, Marshall Hall Jr., and John G. Thompson, Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Z. 74 (1960), 1–17. MR 114856, DOI 10.1007/BF01180468
- Walter Feit and Graham Higman, The nonexistence of certain generalized polygons, J. Algebra 1 (1964), 114–131. MR 170955, DOI 10.1016/0021-8693(64)90028-6
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261 58. D. Fendel, A characterization of Conway’s group.3, J. Algebra 24 (1973), 159-196.
- Bernd Fischer, A characterization of the symmetric groups on 4 and 5 letters, J. Algebra 3 (1966), 88–98. MR 194498, DOI 10.1016/0021-8693(66)90020-2
- Bernd Fischer, Distributive Quasigruppen endlicher Ordnung, Math. Z. 83 (1964), 267–303 (German). MR 160845, DOI 10.1007/BF01111162
- Bernd Fischer, Finite groups admitting a fixed-point-free automorphism of order $2p$. II, J. Algebra 5 (1967), 25–40. MR 200342, DOI 10.1016/0021-8693(67)90023-3 62. B. Fischer, Finite groups generated by 3-transpositions, University of Warwick (preprint).
- Bernd Fischer, Finite groups generated by $3$-transpositions. I, Invent. Math. 13 (1971), 232–246. MR 294487, DOI 10.1007/BF01404633 64. B. Fischer, Evidence for the existence of a new (3, 4)-transposition group (unpublished).
- Paul Fong and Gary M. Seitz, Groups with a $(B,\,N)$-pair of rank $2$. I, II, Invent. Math. 21 (1973), 1–57; ibid. 24 (1974), 191–239. MR 354858, DOI 10.1007/BF01389689
- Paul Fong and W. J. Wong, A characterization of the finite simple groups $\textrm {PSp} (4,q)$, $G_{2}(q)$, $D_{4}{}^{2}(q)$. I, Nagoya Math. J. 36 (1969), 143–184. MR 255666, DOI 10.1017/S0027763000013180 67. R. Foote, Finite groups with maximal 2-components of type L2(q), q odd (to appear).
- Robert Gilman and Daniel Gorenstein, Finite groups with Sylow $2$-subgroups of class two. I, II, Trans. Amer. Math. Soc. 207 (1975), 1–101; ibid. 207 (1975), 103–126. MR 379662, DOI 10.1090/S0002-9947-1975-99937-3
- George Glauberman, A characteristic subgroup of a $p$-stable group, Canadian J. Math. 20 (1968), 1101–1135. MR 230807, DOI 10.4153/CJM-1968-107-2
- George Glauberman, Subgroups of finite groups, Bull. Amer. Math. Soc. 73 (1967), 1–12. MR 213430, DOI 10.1090/S0002-9904-1967-11616-1
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822, DOI 10.1016/0021-8693(66)90030-5
- George Glauberman, On solvable signalizer functors in finite groups, Proc. London Math. Soc. (3) 33 (1976), no. 1, 1–27. MR 417284, DOI 10.1112/plms/s3-33.1.1
- G. Glauberman, Global and local properties of finite groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 1–64. MR 0352241
- George Glauberman, Isomorphic subgroups of finite $p$-groups. I, II, Canadian J. Math. 23 (1971), 983–1022; ibid. 23 (1971), 1023–1039. MR 374262, DOI 10.4153/CJM-1971-106-0
- G. Glauberman, Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, No. 33, American Mathematical Society, Providence, R.I., 1977. MR 0470072, DOI 10.1090/cbms/033
- David M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138–142. MR 260869, DOI 10.1016/0021-8693(70)90046-3
- David M. Goldschmidt, Solvable signalizer functors on finite groups, J. Algebra 21 (1972), 137–148. MR 297861, DOI 10.1016/0021-8693(72)90040-3
- David M. Goldschmidt, $2$-signalizer functors on finite groups, J. Algebra 21 (1972), 321–340. MR 323904, DOI 10.1016/0021-8693(72)90027-0
- David M. Goldschmidt, $2$-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70–117. MR 335627, DOI 10.2307/1971014
- David M. Goldschmidt, Strongly closed $2$-subgroups of finite groups, Ann. of Math. (2) 102 (1975), no. 3, 475–489. MR 393223, DOI 10.2307/1971040 81. D. Goldschmidt, Pushing up A Σ (unpublished).
- Daniel Gorenstein, On the centralizers of involutions in finite groups, J. Algebra 11 (1969), 243–277. MR 240188, DOI 10.1016/0021-8693(69)90056-8
- Daniel Gorenstein, The flatness of signalizer functors on finite groups, J. Algebra 13 (1969), 509–512. MR 251121, DOI 10.1016/0021-8693(69)90112-4
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Daniel Gorenstein, On finite simple groups of characteristic $2$ type, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 5–13. MR 260864, DOI 10.1007/BF02684594
- Daniel Gorenstein and Koichiro Harada, Finite groups whose Sylow $2$-subgroups are the direct product of two dihedral groups, Ann. of Math. (2) 95 (1972), 1–54. MR 313384, DOI 10.2307/1970852
- Daniel Gorenstein and Koichiro Harada, On finite groups with Sylow $2$-subgroups of type $A_{n}$, $n=8,\,9,\,10,\,11$, Math. Z. 117 (1970), 207–238. MR 276348, DOI 10.1007/BF01109844
- Daniel Gorenstein and Koichiro Harada, Finite simple groups of low $2$-rank and the families $G_{2}(q),\,D_{4}^{2}(q),\,q$ odd, Bull. Amer. Math. Soc. 77 (1971), 829–862. MR 306301, DOI 10.1090/S0002-9904-1971-12794-5
- Daniel Gorenstein and Koichiro Harada, Finite groups whose $2$-subgroups are generated by at most $4$ elements, Memoirs of the American Mathematical Society, No. 147, American Mathematical Society, Providence, R.I., 1974. MR 0367048
- Daniel Gorenstein and Morton E. Harris, A characterization of the Higman-Sims simple group, J. Algebra 24 (1973), 565–590. MR 311756, DOI 10.1016/0021-8693(73)90128-2
- Daniel Gorenstein and Morton E. Harris, Finite groups with product fusion, Ann. of Math. (2) 101 (1975), 45–87. MR 357605, DOI 10.2307/1970986
- Daniel Gorenstein and Richard Lyons, Non-solvable signalizer functors on finite groups, Proc. London Math. Soc. (3) 35 (1977), no. 1, 1–33. MR 450396, DOI 10.1112/plms/s3-35.1.1
- Daniel Gorenstein and John H. Walter, On the maximal subgroups of finite simple groups, J. Algebra 1 (1964), 168–213. MR 172917, DOI 10.1016/0021-8693(64)90032-8 94. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra 2 (1965), 85-151, 218-270, 354-393.
- Daniel Gorenstein and John H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284–319. MR 292927, DOI 10.1016/0021-8693(72)90060-9 96. D. Gorenstein and J. Walter, The π-layer of a finite group, Illinois J. Math. 15 (1971), 555-564.
- Daniel Gorenstein and John H. Walter, Balance and generation in finite groups, J. Algebra 33 (1975), 224–287. MR 357583, DOI 10.1016/0021-8693(75)90123-4
- Robert L. Griess Jr., Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc. 183 (1973), 355–421. MR 338148, DOI 10.1090/S0002-9947-1973-0338148-0
- Robert L. Griess Jr., Schur multipliers of some sporadic simple groups, J. Algebra 32 (1974), no. 3, 445–466. MR 382426, DOI 10.1016/0021-8693(74)90151-3 100. R. Griess, On the subgroup structure of the group of order 246 • 320 • 59 • 76 • 112 • 133 • 17 • 19 • 23 • 29 • 31 • 41 • 47 • 59 • 71 (to appear). 101. R. Griess, The structure of the “monster” simple group, Scott-Gross Symposium, pp. 113-118 (cf. 166).
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Marshall Hall Jr. and David Wales, The simple group of order $604,800$, J. Algebra 9 (1968), 417–450. MR 240192, DOI 10.1016/0021-8693(68)90014-8 104. P. Hall, A note on soluble groups, J. London Math. Soc. 3 (1928), 98-105. 105. P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 12 (1937), 190-200. 106. P. Hall, On the Sylow systems of a soluble group, Proc. London Math. Soc. 43 (1937), 316-323. 107. P. Hall, On the system normalizers of a soluble group, Proc. London Math. Soc. 43 (1937), 507-528. 108. P. Hall and G. Higman, The p-length of a p-soluble group and reduction theorems for Burnside’s problem, Proc. London Math. Soc. 7 (1956), 1-42.
- Koichiro Harada, On finite groups having self-centralizing $2$-subgroups of small order, J. Algebra 33 (1975), 144–160. MR 354857, DOI 10.1016/0021-8693(75)90135-0 110. K. Harada, On the simple group F of order 214 • 36 • 56 • 7 • 11 • 9, Scott-Gross, symposium, pp. 119-195.
- Morton E. Harris, Finite groups with Sylow $2$-subgroups of type $PS\textrm {p}(6, q), q$ odd, Comm. Algebra 2 (1974), 181–232. MR 409647, DOI 10.1080/00927877408822010
- Dieter Held, The simple groups related to $M_{24}$, J. Algebra 13 (1969), 253–296. MR 249500, DOI 10.1016/0021-8693(69)90074-X
- Christoph Hering, William M. Kantor, and Gary M. Seitz, Finite groups with a split $BN$-pair of rank $1$. I, J. Algebra 20 (1972), 435–475. MR 301085, DOI 10.1016/0021-8693(72)90068-3
- Donald G. Higman, Finite permutation groups of rank $3$, Math. Z. 86 (1964), 145–156. MR 186724, DOI 10.1007/BF01111335
- Donald G. Higman and Charles C. Sims, A simple group of order $44,352,000$, Math. Z. 105 (1968), 110–113. MR 227269, DOI 10.1007/BF01110435
- Graham Higman, Suzuki $2$-groups, Illinois J. Math. 7 (1963), 79–96. MR 143815 117. G. Higman and J. McKay, On Janko’s simple group of order 50, 232, 960, Bull. London Math. Soc. 1 (1969), 89-94.
- M. B. Powell and G. Higman (eds.), Finite simple groups, Academic Press, London-New York, 1971. MR 0327886
- C. Y. Ho, On the quadratic pair whose root group has order $3$, Bull. Inst. Math. Acad. Sinica 1 (1973), no. 2, 155–180. MR 344341
- Chat Yin Ho, Quadratic pairs for $3$ whose root group has order greater than $3$. I, Comm. Algebra 3 (1975), no. 11, 961–1029. MR 384923, DOI 10.1080/00927877508822083
- C. Y. Ho, Chevalley groups of odd characteristic as quadratic pairs, J. Algebra 41 (1976), no. 1, 202–211. MR 414737, DOI 10.1016/0021-8693(76)90177-0
- Chat-Yin Ho, On the quadratic pairs, J. Algebra 43 (1976), no. 1, 338–358. MR 422404, DOI 10.1016/0021-8693(76)90164-2
- C. Y. Ho, Quadratic pairs for odd primes, Bull. Amer. Math. Soc. 82 (1976), no. 6, 941–943. MR 417273, DOI 10.1090/S0002-9904-1976-14227-9
- D. F. Holt, Doubly transitive groups in which the stabilizer of two points is dihedral, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 107, 267–295. MR 486077, DOI 10.1093/qmath/27.3.267 125. D. Holt, Transitive permutation groups in which a 2-central involution fixes a unique point (to appear).
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Noboru Itô, On a class of doubly transitive permutation groups, Illinois J. Math. 6 (1962), 341–352. MR 138675
- Nagayoshi Iwahori, Centralizers of involutions in finite Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 267–295. MR 0258945 129. N. Iwahori, Finite groups, Symposium, Japan Soc. for Promotion of Science, Tokyo, 1976.
- Zvonimir Janko, A new finite simple group with abelian Sylow $2$-subgroups and its characterization, J. Algebra 3 (1966), 147–186. MR 193138, DOI 10.1016/0021-8693(66)90010-X
- Zvonimir Janko, Some new simple groups of finite order. I, Symposia Mathematica (INDAM, Rome, 1967/68) Academic Press, London, 1969, pp. 25–64. MR 0244371
- Zvonimir Janko, The nonexistence of a certain type of finite simple group, J. Algebra 18 (1971), 245–253. MR 285604, DOI 10.1016/0021-8693(71)90057-3
- Zvonimir Janko, A characterization of the Mathieu simple groups. I, II, J. Algebra 9 (1968), 1-19; ibid. 9 (1968), 20–41. MR 0229710, DOI 10.1016/0021-8693(68)90002-1
- Zvonimir Janko, A new finite simple group of order $86\cdot 775\cdot 571\cdot 046\cdot 077\cdot 562\cdot 880$ which possesses $M_{24}$ and the full covering group of $M_{22}$ as subgroups, J. Algebra 42 (1976), no. 2, 564–596. MR 432751, DOI 10.1016/0021-8693(76)90115-0
- Zvonimir Janko and John G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274–292. MR 201504, DOI 10.1016/0021-8693(66)90041-X
- William M. Kantor and Gary M. Seitz, Some results on $2$-transitive groups, Invent. Math. 13 (1971), 125–142. MR 316566, DOI 10.1007/BF01390097
- Proceedings of the International Conference on the Theory of Groups, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0215897
- John Leech, Some sphere packings in higher space, Canadian J. Math. 16 (1964), 657–682. MR 167901, DOI 10.4153/CJM-1964-065-1
- John Leech, Notes on sphere packings, Canadian J. Math. 19 (1967), 251–267. MR 209983, DOI 10.4153/CJM-1967-017-0
- Jeffrey S. Leon and Charles C. Sims, The existence and uniqueness of a simple group generated by $\{3,4\}$-transpositions, Bull. Amer. Math. Soc. 83 (1977), no. 5, 1039–1040. MR 444765, DOI 10.1090/S0002-9904-1977-14369-3
- Richard Lyons, Evidence for a new finite simple group, J. Algebra 20 (1972), 540–569. MR 299674, DOI 10.1016/0021-8693(72)90072-5
- Anne R. MacWilliams, On $2$-groups with no normal abelian subgroups of rank $3$, and their occurrence as Sylow $2$-subgroups of finite simple groups, Trans. Amer. Math. Soc. 150 (1970), 345–408. MR 276324, DOI 10.1090/S0002-9947-1970-0276324-3
- David R. Mason, Finite groups with Sylow $2$-subgroup, the direct product of a dihedral and a wreathed group, and related problems, Proc. London Math. Soc. (3) 33 (1976), no. 3, 401–442. MR 414690, DOI 10.1112/plms/s3-33.3.401
- Patrick Paschal McBride, Near solvable signalizer functors on finite groups, J. Algebra 78 (1982), no. 1, 181–214. MR 677717, DOI 10.1016/0021-8693(82)90107-7
- John McKay, Computing with finite simple groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 448–452. MR 0364431
- John McKay and David Wales, The multipliers of the simple groups of order $604,800$ and $50,232,960$, J. Algebra 17 (1971), 262–272. MR 274577, DOI 10.1016/0021-8693(71)90033-0
- Jack McLaughlin, Some subgroups of $\textrm {SL}_{n}\,(\textbf {F}_{2})$, Illinois J. Math. 13 (1969), 108–115. MR 237660
- Jack McLaughlin, A simple group of order $898,128,000$, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 109–111. MR 0242941 149. R. Niles, Pushing up L2(2), Ph.D. thesis, University of Chicago, 1976. 150. S. Norton, Some properties of the Fischer monster (unpublished). 151. M. O’Nan, Automorphisms of unitary block designs, J. Algebra 20 (1972), 495-511. 152. M. O’Nan, A characterization of U3(q), J. Algebra 22 (1972), 254-296. 153. M. O’Nan, A characterization of L(q) as a permutation group, Math. Z. 127 (1972), 301-314. 154. M. O’Nan, Normal structure of the one-point stabilizer of a doubly transitive permutation group, Trans. Amer. Math. Soc. 214 (1975), 1-42, 43-74. 155. M. O’Nan, Some evidence for the existence of a new simple group, Proc. London Math. Soc. 32 (1976), 421-479. 156. M. O’Nan, Local properties of sporadic groups (unpublished).
- David Parrott, A characterization of the Tits’ simple group, Canadian J. Math. 24 (1972), 672–685. MR 325757, DOI 10.4153/CJM-1972-063-0 158. N. Patterson, On Conway’s group .0 and some subgroups (to appear).
- Kok Wee Phan, On groups generated by three-dimensional special unitary groups. I, J. Austral. Math. Soc. Ser. A 23 (1977), no. 1, 67–77. MR 435247, DOI 10.1017/s1446788700017353
- Rimhak Ree, A family of simple groups associated with the simple Lie algebra of type $(F_{4})$, Amer. J. Math. 83 (1961), 401–420. MR 132781, DOI 10.2307/2372886
- Rimhak Ree, A family of simple groups associated with the simple Lie algebra of type $(G_{2})$, Amer. J. Math. 83 (1961), 432–462. MR 138680, DOI 10.2307/2372888
- Rimhak Ree, Classification of involutions and centralizers of involutions in certain simple groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965) Gordon and Breach, New York, 1967, pp. 281–301. MR 0220737 163. A. Rudvalis, Evidence for the existence of a simple group of order 145, 926, 144, 000 (to appear). 164. I. Schur, Untersuchen über die Darstellung der endlichen Gruppen durch gebrochnen linearen Substitutionen, Crelle J. 132 (1907), 85-137. 165. I. Schur, Über die Darstellungen der symmetrischen und alternierenden Gruppen durch gebrochene lineare Substitutionen, Crelle J. 139 (1911), 155-250.
- William R. Scott and Fletcher Gross (eds.), Proceedings of the Conference on Finite Groups, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Held at the University of Utah, Park City, Utah, February 10–13, 1975. MR 0393202
- Gary M. Seitz, Generation of finite groups of Lie type, Trans. Amer. Math. Soc. 271 (1982), no. 2, 351–407. MR 654839, DOI 10.1090/S0002-9947-1982-0654839-1
- Ernest Shult, On a class of doubly transitive groups, Illinois J. Math. 16 (1972), 434–445. MR 296150 169. E. Shult, On the fusion of an involution in its centralizer (to appear).
- Terrence Gagen, Mark P. Hale Jr., and Ernest E. Shult (eds.), Finite groups ’72, North-Holland Mathematics Studies, Vol. 7, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0347962
- Charles C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967), 76–86. MR 204509, DOI 10.1007/BF01117534 172. C. Sims, The existence and uniqueness of Lyons’ group, Gainesville conference, 138-141 (cf. 170). 173. C. Sims, The existence and uniqueness of O’Nan’s group (unpublished).
- Fredrick L. Smith, Finite groups whose Sylow $2$-subgroups are the direct product of a dihedral and a semi-dihedral group, Illinois J. Math. 17 (1973), 352–386. MR 320141
- Fredrick L. Smith, Finite groups whose Sylow $2$-subgroups are the direct product of a dihedral and a semi-dihedral group, Illinois J. Math. 17 (1973), 352–386. MR 320141
- Fredrick L. Smith, A characterization of the $.2$ Conway simple group, J. Algebra 31 (1974), 91–116. MR 349832, DOI 10.1016/0021-8693(74)90007-6 177. S. Smith, Finite group with a maximal 2-local subgroup in which 02 is extra-special. I, II, III (to appear).
- Ronald Solomon, Finite groups with intrinsic $2$-components of type $\hat A_{n}$, J. Algebra 33 (1975), 498–522. MR 372034, DOI 10.1016/0021-8693(75)90115-5
- Ronald Solomon, Maximal $2$-components in finite groups, Comm. Algebra 4 (1976), no. 6, 561–594. MR 422415, DOI 10.1080/00927877608822121
- Ronald Solomon, $2$-signalizers in finite groups of alternating type, Comm. Algebra 6 (1978), no. 6, 529–549. MR 466303, DOI 10.1080/00927877808822257
- R. G. Stanton, The Mathieu groups, Canad. J. Math. 3 (1951), 164–174. MR 40304, DOI 10.4153/cjm-1951-021-6 182. B. Stark, Quadratic pairs revisited (to appear).
- Robert Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875–891. MR 109191, DOI 10.2140/pjm.1959.9.875
- Robert Steinberg, Automorphisms of finite linear groups, Canadian J. Math. 12 (1960), 606–615. MR 121427, DOI 10.4153/CJM-1960-054-6
- Robert Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113–127 (French). MR 0153677
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Michio Suzuki, The nonexistence of a certain type of simple groups of odd order, Proc. Amer. Math. Soc. 8 (1957), 686–695. MR 86818, DOI 10.1090/S0002-9939-1957-0086818-0
- Michio Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 99 (1961), 425–470. MR 131459, DOI 10.1090/S0002-9947-1961-0131459-5
- Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105–145. MR 136646, DOI 10.2307/1970423
- Michio Suzuki, On characterizations of linear groups. III, Nagoya Math. J. 21 (1962), 159–183. MR 142665, DOI 10.1017/S0027763000023813
- Michio Suzuki, A characterization of the $3$-dimensional projective unitary group over a finite field of odd characteristic, J. Algebra 2 (1965), 1–14. MR 178078, DOI 10.1016/0021-8693(65)90021-9
- Michio Suzuki, A simple group of order $448,345,497,600$, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 113–119. MR 0241527
- Michio Suzuki, Characterizations of linear groups, Bull. Amer. Math. Soc. 75 (1969), 1043–1091. MR 260889, DOI 10.1090/S0002-9904-1969-12351-7
- Michio Suzuki, Characterizations of some finite simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 371–373. MR 0427454 195. M. Suzuki, A characterization of the orthogonal groups over finite fields of characteristic two, Iwahori, Symposium, pp. 105-112.
- John Tate, Nilpotent quotient groups, Topology 3 (1964), no. suppl, suppl. 1, 109–111. MR 160822, DOI 10.1016/0040-9383(64)90008-4
- John G. Thompson, Normal $p$-complements for finite groups, Math. Z 72 (1959/1960), 332–354. MR 0117289, DOI 10.1007/BF01162958
- John G. Thompson, 2-signalizers of finite groups, Pacific J. Math. 14 (1964), 363–364. MR 159874, DOI 10.2140/pjm.1964.14.363
- John G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. II, Pacific J. Math. 33 (1970), 451–536. MR 276325, DOI 10.2140/pjm.1970.33.451 200. J. Thompson, Toward a characterization of $E\sb 2^*(q)$. I, II, III, J. Algebra 7 (1967), 406-414; 20 (1972), 610-621; 49 (1977), 162-166. 201. J. Thompson, Notes on the B-conjecture (unpublished).
- John G. Thompson, Fixed points of $p$-groups acting on $p$-groups, Math. Z. 86 (1964), 12–13. MR 168653, DOI 10.1007/BF01111272 203. J. Thompson, Quadratic pairs (unpublished).
- J. G. Thompson, Simple $3^{\prime }$-groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 517–530. MR 0360802 205. J. Thompson, A simple subgroup of E8(3), Iwahori, Symposium, pp. 113-116 (cf. 129).
- J. G. Thompson, A conjugacy theorem for $E_{8}$, J. Algebra 38 (1976), no. 2, 525–530. MR 399193, DOI 10.1016/0021-8693(76)90235-0
- F. G. Timmesfeld, Eine Kennzeichnung der linearen Gruppen über $\textrm {GF}(2)$, Math. Ann. 189 (1970), 134–160 (German). MR 271214, DOI 10.1007/BF01350298
- F. G. Timmesfeld, Groups generated by root-involutions. I, II, J. Algebra 33 (1975), 75–134; ibid. 35 (1975), 367–441. MR 372019, DOI 10.1016/0021-8693(75)90133-7
- Franz Georg Timmesfeld, Groups with weakly closed TI-subgroups, Math. Z. 143 (1975), no. 3, 243–278. MR 407143, DOI 10.1007/BF01214379
- Jacques Tits, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. Sci. Paris 254 (1962), 2910–2912 (French). MR 138706
- J. Tits, Groupes simples et géométries associées, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 197–221 (French). MR 0175903
- J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. MR 164968, DOI 10.2307/1970394
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
- John H. Walter, The characterization of finite groups with abelian Sylow $2$-subgroups, Ann. of Math. (2) 89 (1969), 405–514. MR 249504, DOI 10.2307/1970648 215. H. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.
- H. N. Ward, On the triviality of primary parts of the Schur multiplier, J. Algebra 10 (1968), 377–382. MR 232858, DOI 10.1016/0021-8693(68)90087-2
- A. J. Weir, Sylow $p$-subgroups of the classical groups over finite fields with characteristic prime to $p$, Proc. Amer. Math. Soc. 6 (1955), 529–533. MR 72143, DOI 10.1090/S0002-9939-1955-0072143-9
- Helmut Wielandt, Primitive Permutationsgruppen vom Grad $2p$, Math. Z. 63 (1956), 478–485 (German). MR 75200, DOI 10.1007/BF01187953
- Helmut Wielandt, Finite permutation groups, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR 0183775
- Warren J. Wong, Determination of a class of primitive permutation groups, Math. Z. 99 (1967), 235–246. MR 214653, DOI 10.1007/BF01112454
- W. J. Wong, On finite groups whose $2$-Sylow subgroups have cyclic subgroups of index $2$, J. Austral. Math. Soc. 4 (1964), 90–112. MR 0160816, DOI 10.1017/S1446788700022771 222. H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Hamburg Univ. 11 (1936), 17-40.
- Charles W. Curtis, Irreducible representations of finite groups of Lie type, J. Reine Angew. Math. 219 (1965), 180–199. MR 182657, DOI 10.1515/crll.1965.219.180
- Walter Feit and John G. Thompson, Finite groups which contain a self-centralizing subgroup of order 3, Nagoya Math. J. 21 (1962), 185–197. MR 142623, DOI 10.1017/S0027763000023825
- George Glauberman, Failure of factorization in $p$-solvable groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 71–77. MR 318301, DOI 10.1093/qmath/24.1.71 226. G. Glauberman, A pushing up theorem for L2(2) (to appear). 227. E. Mathieu, Mémoire sur le nombre de valeurs que peut acquérir une fonction quand on y permute ses variables de toutes les manières possibles, Crelle J. 5 (1860), 9-42. 228. E. Mathieu, Mémoire sur l’étude des functions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissent invariables, Crelle J. 6 (1861), 241-323. 229. E. Mathieu, Sur la function cinq fois transitive des 24 quantités, Crelle J. 18 (1873), 25-46. 230. S. Norton, Construction of Harada’s group, Ph.D. thesis, University of Cambridge, 1976. 231. F. Smith, Transitive permutation groups in which a 2-central involution fixes a unique point (unpublished).
- W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474. MR 21678, DOI 10.1017/s0305004100023720
- W. T. Tutte, On the symmetry of cubic graphs, Canadian J. Math. 11 (1959), 621–624. MR 109794, DOI 10.4153/CJM-1959-057-2
- Robert L. Griess Jr., On a subgroup of order $2^{15}\mid GL(5,2)\mid$ in $E_{8}(\textbf {C}),$ the Dempwolff group and $\textrm {Aut}(D_{8}\circ D_{8}\circ D_{8}).$, J. Algebra 40 (1976), no. 1, 271–279. MR 407149, DOI 10.1016/0021-8693(76)90097-1
Additional Information
- Journal: Bull. Amer. Math. Soc. 1 (1979), 43-199
- MSC (1970): Primary 20D05, 20-02
- DOI: https://doi.org/10.1090/S0273-0979-1979-14551-8
- MathSciNet review: 513750