BOUNDARY REGULARITY AND EMBEDDED SOLUTIONS
FOR THE ORIENTED PLATEAU PROBLEM
BY ROBERT HARDT¹ AND LEON SIMON

Any fixed C^2 Jordan curve Γ in \mathbb{R}^3 is known to span an orientable minimal surface in several different senses. In the work of Douglas, Rado and Courant (see e.g. [3, IV, §4]) the minimal surface occurs as an area-minimizing mapping from a fixed orientable surface of finite genus and may possibly have self-intersections. In the work of Federer and Fleming (see e.g. [4, §5]) the minimal surface, which occurs as the support of an area-minimizing rectifiable current, is necessarily embedded (away from Γ) but was not previously known even to have finite genus. Our work in [7], which establishes complete boundary regularity for the latter surface, thus implies that there exists an orientable embedded minimal surface with boundary Γ. In fact:

Theorem 1. For any compact orientable $n-1$ dimensional C^2 embedded submanifold N of \mathbb{R}^{n+1}, there exists an orientable bounded stable minimal embedded $C^{1,\alpha}$ (for all $0 < \alpha < 1$) hypersurface M with boundary N so that the closure of M in \mathbb{R}^{n+1} equals $M \cup S$ for some compact set $S \subset \mathbb{R}^{n+1} \sim N$ of Hausdorff dimension $\leq n-7$.

Using the existence theory for area minimizing rectifiable currents [4, 5.1] and their interior regularity theory [5, Theorem 1], Theorem 1 follows from our boundary regularity result [7, 11.1]:

Theorem 2. If U is an open subset of \mathbb{R}^{n+1}, T is an n dimensional absolutely area minimizing locally rectifiable current in U, and ∂T is an oriented embedded C^2 submanifold of U, then, for some open neighborhood V of spt ∂T in U, $V \cap$ spt T is an embedded $C^{1,\alpha}$ hypersurface with boundary for all $0 < \alpha < 1$.

W. K. Allard [1, §5] has proven such regularity near points on the boundary of the convex hull of spt T. Boundary regularity in $n = 2$ for the unoriented problem [4, 5.3.21] (and so the existence of possibly nonorientable embedded minimal surfaces with boundary) also follows from his work. For $k \geq 2$, $C^{k,\alpha}$

Received by the editors June 21, 1978.

Key words and phrases. Minimal surface, absolutely area minimizing rectifiable current, tangent cone, excess.

¹Partially supported by NSF Grant MCS-7701747

©American Mathematical Society 1979
smoothness (analyticity) in Theorems 1, 2 for C^k,α (analytic) boundaries follows from [8, 1.10]. In proving Theorem 2, we obtain:

Theorem 3. Any compact orientable $n - 1$ dimensional embedded minimal submanifold of $S^n = \mathbb{R}^{n+1} \cap \{x: |x| = 1\}$ with boundary $S^n \cap \{(x_1, \ldots, x_{n+1}): x_n = 0 = x_{n+1}\}$ must be a great hemisphere.

[2, Theorem A] shows that $\text{spt} \, T$ above may have an $n - 7$ dimensional interior singular set and that the analogue of Theorem 3 for submanifolds without boundary is false. For $n = 2$, Theorem 2 implies:

Theorem 4. For any C^2 Jordan curve Γ in \mathbb{R}^3, there exists a nonnegative integer G_Γ so that:

1. The Douglas-Courant type, genus g least-area problem [3, IV, 4.1, 4.4] for Γ has no solution whenever $g > G_\Gamma$.
2. There exists a Douglas-Courant type genus G_Γ least-area solution for Γ, and any such solution is embedded.
3. The number of such solutions is finite if Γ is C^4,α.

There are also a priori bounds on G_Γ, the number of solutions, and the absolute value of the Gaussian curvature of any solution.

Sketch of proof of Theorem 2. To obtain regularity near a point $a \in $ spt ∂T, we assume $a = 0$ and first prove that the support of some oriented tangent cone at 0 is contained in a hyperplane. For $n = 2$, this follows from the monotonicity formula [1, 3.4], interior regularity [5], and the planar nature of geodesies on S^2. For $n > 2$, an inductive argument using linear barriers is required. Letting $H_+ = \mathbb{R}^n \cap \{(y_1, \ldots, y_n): \pm y_n > 0\}$ and rotating, we assume that for some positive integer m the oriented tangent cone is the sum of m times $H_+ \times \{0\}$ and m times $H_- \times \{0\}$, both taken with the usual orientation $e_1 \wedge \cdots \wedge e_m$. Since the case $m = 1$ has been treated by Allard [1, §5], we henceforth assume $m \geq 2$.

Using [4, 5.4.2], we now see that the normalized height

$$h(r) = \sup \{ |x_{n+1}|/r: (x_1, \ldots, x_{n+1}) \in \text{spt} \, T, \, |(x_1, \ldots, x_n)| \leq r \}$$

has lower limit 0 as $r \downarrow 0$. After establishing that $h(r)$ is comparable (except for a boundary curvature term and a slight change in r) with the cylindrical excess $\text{Exc}(T, 0, r)$ of [4, 5.3], we may apply the interior regularity theorem [4, 5.3.14] in vertical circular cylinders which do not meet spt ∂T. From this, one finds C^1 domains $\Omega_\pm \subset H_\pm$ which are mutually tangent at the origin so that over $\Omega_+ \cup \Omega_-$, spt T separates into graphs of real analytic minimal-surface-equation solutions:

$$u_1^+ \leq u_2^+ \leq \cdots \leq u_m^+ \quad \text{on} \quad \Omega_+, \quad u_1^- \leq u_2^- \leq \cdots \leq u_m^- \quad \text{on} \quad \Omega_-.$$
Concerning the boundary behavior of each u_i^\pm, one may, at this stage, only conclude that

$$
\lim_{\Omega_{\pm} \ni y \to 0} |u_i^+(y)| + |Du_i^+(y)| = 0.
$$

The goal of the middle third of [7] is the specific estimate

$$
\limsup_{r \downarrow 0} r^{-\frac{1}{2}} h(r) < \infty.
$$

Besides involving many well-known concepts of geometric measure theory (monotonicity, excess, blowing-up) and well-known nonparametric regularity estimates (DeGiorgi-Nash, Schauder), the work here includes a new estimate on the radial derivative of each u_i^\pm and a new comparison between spherical and cylindrical excess.

Using (3), we verify that Ω_{\pm}, u_i^\pm may be chosen so that

$$
\Omega_{\pm} \text{ is a } C^{1,1/10} \text{ domain, } \quad u_i^\pm \in C^{1,1/4}(\text{Clos } \Omega_{\pm}).
$$

Under conditions (1), (2), and (4), the C^1, α Hopf-type boundary point lemma of Finn and Gilbarg [6, Lemma 7] implies that $u_1^+ = \cdots = u_m^+$, $u_1^- = \cdots = u_{m-1}^-$. For a small open ball B about 0, we then subtract off the oriented component, which meets the graph of u_1^+, of the regular points of $B \cap (\text{spt } T) \sim \text{spt } T$ to obtain an area minimizing $S \in \mathcal{R}^{n\text{loc}}(B)$ with $\partial S = 0$ and $\text{spt } S = B \cap \text{spt } T$. The proof is completed by using the interior regularity theorem [4, 5.3.18] which implies that (since $h(r) \to 0$ as $r \downarrow 0$) $\text{spt } S$ is, near 0, an embedded real analytic minimal submanifold.

REFERENCES

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455
MATHEMATICS DEPARTMENT, UNIVERSITY OF MELBOURNE, PARKVILLE, VICTORIA, 3052, AUSTRALIA