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The book by Graver and Watkins is one of the two most ambitious 
accounts so far attempted in the field of combinatorial mathematics (the 
other being the two-volume Kombinatorik by M. Aigner, also recently brought 
out by Springer). Its publication is a notable event which affords the reviewer 
an opportunity to clarify his own ideas and to record his impressions of the 
present state of combinatorics. The reader of this notice will, I trust, bear with 
me if I do not plunge at once in médias res but try to place my conclusions in 
a fairly broad context. It is surely unnecessary to add that what I shall say 
has no claim whatever to originality-my sole purpose is to gain a reasonable 
perspective of the topics treated in the book under review. 

Even a sleepy observer of the contemporary mathematical scene cannot but 
be struck by the spectacular growth of combinatorial studies in the very 
recent past. As little as, say, twenty years ago enthusiasm for work in this 
field was still regarded as a sign of mild eccentricity, and the problems 
investigated by combinatorialists were nowhere near the centre of the 
mathematical stage. Thus the late J. H. C. Whitehead probably did no more 
than express a tacit consensus when he described the theory of graphs as 'the 
slums of topology'. Nous avons changé tout cela-decisively and rapidly. Few 
universities anywhere in the world now fail to offer instruction in one or other 
aspect of combinatorics; several flourishing journals are wholly devoted to 
this discipline; and the number of conferences, of books, of papers, of 
graduate students, and of qualified practitioners has increased and is increas
ing at a rate which is probably a second order exponential. The reasons for 
this startling phenomenon are nevertheless not too dificult to discern. For one 
thing, combinatorial methods (as distinct from combinatorics as a subject) 
have naturally always constituted a vital ingredient of mathematical reason
ing. It is therefore hardly a matter for surprise that, at some stage in the 
development of mathematics, a progressively conscious attempt should have 
been made to identify and isolate the specifically combinatorial arguments 
and to weld them into a coherent discipline (or range of disciplines). That 
this attempt should have got under way only recently rather than, say, fifty 
years ago is undoubtedly due to a plethora of questions of a combinatorial 
character thrown up in the last quarter of a century by subjects oriented 
towards practical applications, such as operational research, statistics, infor
mation theory and, above all, modern computer science. The avalanche, 
having once been set in motion, has been accelerating under its own momen
tum: every mathematician tends to transmit his own preoccupations to his 
pupils and colleagues and every paper that appears in print tends to provoke 
further research. Moreover, the change is not purely quantitative; when a 
collection of problems and methods reaches a certain degree of coherence, it 
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assumes the character of an autonomous study which need not look for 
inspiration to extraneous sources. And finally, if a sufficient number of really 
able mathematicians devote their energies to a certain range of questions, 
there is every likelihood that their findings will become a focus of general 
mathematical interest. So with combinatorics: it is obviously no longer to be 
shrugged off as being merely of marginal significance-its presence is too 
strongly felt and its influence too pervasive for the continuation of 
Whitehead's dismissive stance. Indeed, every one of a score of outstanding 
mathematicians who have contributed crucial ideas to the recent development 
of combinatorics could assert with rightful pride: exegi monumentum. Voices 
have even been heard insisting on the fundamental role of combinatorics for 
the entire body of mathematical knowledge. Claims as far-reaching as these 
seem to me excessive; but it is symptomatic of the current prestige of the 
subject that they should be made at all. 

If we are to gain a clear picture of the nature of recent advances in 
combinatorics, we would do well to view them against the background of 
advances (say over the last 70 or 80 years) in other areas of mathematics. 
Once our intention has been formulated in these terms, we readily perceive a 
common pattern. The initial push is, as a rule, a messy and uncoordinated 
affair: the objectives have not yet been identified with any precision; there 
are no standard methods and techniques; individual mathematicians work in 
comparative isolation; and their conclusions inevitably exhibit both partial 
overlaps and differences of approach. However, when the bulk of available 
information reaches a critical mass, a qualitative transformation-sometimes 
slow and sometimes very rapid-takes place. The workers in the field become 
fully conscious of each other's efforts and eventually find themselves first 
groping and then striding towards a common goal. In this way a hotch-potch 
of loosely connected results turns into a study that before long acquires the 
characteristics of a systematic discipline. And at this point the fact that our 
grasp of the material has become sufficiently firm is often made manifest by 
the appearance of a comprehensive treatise which codifies the subject and 
gives it the authentic stamp of unity-an event which itself contributes 
decisively to subsequent progress. The crooked having now been made 
straight and the rough places plain, further work can be carried out in a much 
more effective fashion along clearly marked lines. The orderly advances then 
continues until some fresh upheaval disturbs the transient balance-possibly a 
merger with another discipline or the subordination to some more fundamen
tal study (as in the take-over of algebraic geometry by algebra in the thirties 
and forties). The established framework is then shaken, but the Time of 
Troubles is brought to an end with the expected emergence of a new 
Universal State; and then the pattern of change described a few Unes earlier 
is likely to repeat itself (at a higher level of sophistication). Such, in brief and 
allowing for local variations, seems to me to be the dynamic of advance in 
modern mathematics. 

A few familiar examples might usefully serve to illustrate the pattern I have 
indicated. General topology is an obvious instance (and is, in fact, cited by 
Graver and Watkins). Towards the end of the nineteenth century, it was 
dimly perceived that analysis required a broader framework than was at that 
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time available. The first step was the utilization of the concept of an 
«-dimensional euclidean space. This notion owed its existence more to geom
etry and algebra than to analysis; it first appeared explicitly in Grassmann's 
Ausdehnungslehre (first éd., 1844; second ed. 1862) though not in a form 
which it is easy to recognize today. Analysis made effective use of this 
concept, but this was not yet enough. The next stage was reached with the 
transition to metric spaces (Fréchet, 1906), in which the notion of distance is 
given an axiomatic form. Yet a still more general structure was needed to 
underpin a comprehensive discussion of analysis; and what emerged after 
innumerable experiments and trials was the concept of a 'topological space', 
where the basic object is the collection of open sets. The entire development 
took something like fifty years and, during the twenties and thirties, the 
contributions of the great Polish school proved decisive. By about 1940, the 
subject as we know it was, in all essentials, complete (although the most 
familiar book embodying the final conclusions, J. L. Kelley's General 
topology, did not appear till 1955). 

Another instance is furnished by functional analysis. Here we study certain 
abstract 'spaces' endowed with a structure which generally has both topologi
cal and algebraic features. Naturally, these spaces are chosen so as to reflect 
the most interesting properties of various classes of functions. By special 
interpretations of the abstract entities, we can recover the theorems of 
classical analysis and at the same time note that the proofs become much 
more transparent in the general setting and that the same argument can often 
serve to prove several theorems that previously required separate approaches. 
This, of course, is only the starting point: very soon functional analysis 
reaches a sufficient degree of coherence to generate its own problems and its 
own methods. The beginnings of the subject might reasonably be assigned to 
the work of Volterra in the 1880's, but the strongest impulse derived from 
Hubert's assault on linear integral equations some twenty years later; and the 
most effective tool for the applications to 'concrete' problems was provided 
by the Lebesgue integral. Naturally, the advance into new territory took place 
simultaneously on many different fronts, and the total effort needed to 
achieve any sort of systematization was prodigious. An early classic that must 
be mentioned is Banach's Théorie des opérations linéaires (1932). This is a 
fairly short but astonishingly 'modern' work, and although the subject has 
since grown to vast proportions, Banach's book already exhibits nearly all the 
distinctive features that we associate with the term 'functional analysis'. By 
now the available material is much too extensive to be confined between the 
covers of a single book, and I merely note the most outstanding post-war 
study that covers large tracts of functional analysis: the three volumes of 
Linear operators by Dunford and Schwartz. 

My final, and possibly most telling, illustration is taken from algebra. Since 
the nineteenth century this subject had, in an even greater measure than other 
parts of mathematics, undergone a process of increasing abstraction and 
generalization; and the work of Dedekind, Hubert, Steinitz, Emmy Noether, 
Artin, and others had resulted in the creation of a large body of knowledge 
incapsulating classical algebra but conceived in a fully axiomatic spirit. The 
new approach found its most complete and systematic expression in van der 
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Waerden's Moderne Algebra (2 volumes, first ed. 1930-1931). Here all the 
many strands are woven together into a tightly knit pattern; and with the 
exception of the two Elements, ancient and modern, van der Waerden's work 
is probably the most influential text-book ever written-it summarized the 
achievements of a lengthy process of development and became the manifesto 
of a new era in algebraic investigations. The axiomatic mode is now an 
integral part of our way of thinking, and it is difficult to remember that such 
has not always been the case. The contemporary habit of mind has been 
shaped, at least in part, by the impact of van der Waerden's presentation. 
Needless to say, a great deal of the algebra of our own day (such as 
homological methods and category theory) is absent from van der Waerden's 
treatise. For all that, his masterpiece remains a fount of living knowledge 
rather than a venerable monument. 

So much, then, for general remarks on the phases through which mathe
matical theories often pass in the process of becoming fully articulated. 
Turning now, more specifically, to combinatorics one may as well begin, quite 
artlessly, by asking: what precisely constitutes this subject? The question does 
not admit of a very satisfactory answer (and neither do analogous questions 
relating to other areas of mathematics). As I see it, combinatorics is a range 
of linked studies which have something in common and yet diverge widely in 
their objectives, their methods, and the degree of coherence they have 
attained. Most are concerned with criteria for the existence of certain 
'patterns' or 'arrangements' or 'configurations', where these terms need to be 
interpreted in a very broad sense. Further, in many problems, the emphasis is 
on quantitative aspects: we seek to determine or estimate the number of 
objects of a specified kind or to characterize the patterns which are, in some 
way, extremal. Now the expert can live a happy and useful life without the 
aid of my fumbling attempts at elucidation while the mathematician un
familiar with combinatorial problems will not derive from them any percept
ible enlightenment. By the shades of Euclid and Aristotle! I have evidently 
not supplied much of a definition-but is there a better one? 

Let us not stay for an answer but rather turn to the more profitable task of 
surveying, however superficially, some of the theories that between them 
make up what is now known as 'combinatorics'. The most intensively culti
vated area of combinatorial investigations is undoubtedly the theory of 
graphs. Here individual questions have a long history: we need merely recall 
Euler's problem of the Königsberg bridges or Cayley's determination of the 
number of 'labelled trees on n vertices'. However, the creation of the theory 
of graphs as a unitary discipline is the achievement of Dénes König, of whose 
Theorie der endlichen und unendlichen Graphen (1936) all the numerous recent 
books on the subject are recognizably lineal descendants. König himself 
applied the theory of graphs to derive certain results on matrices (and thereby 
provoked an ill-tempered and ill-judged outburst on the part of Frobenius). 
History has vindicated König: the theory of graphs has found many applica
tions in other parts of mathematics and, in particular, its use in the study of 
nonnegative matrices is now a standard technique. During the past decade, 
objects more general than graphs, namely hypergraphs, have made a strong 
bid for supremacy. Again, within the realm of the theory of graphs, various 
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conglomerations of problems have gradually acquired an unchallenged title to 
local autonomy. Thus an exploitation and quantification of ideas inherent in 
Menger's 'separation theorem' (1927) led to the development of 'network 
theory', formulated by Ford and Fulkerson in their Flows in networks (1962). 
Again, Turân's remarkable paper of 1941 (in which it is proved, inter alia, 
that a graph on n vertices which has at least [n2/4] + 1 edges must contain a 
triangle) inaugurated the study of extremal graphs, a luxuriantly flourishing 
branch of the tree of graph theory from which Paul Erdös has plucked the 
most attractive blossoms. I might also, in passing, refer to the equally 
productive extremal theory of finite sets; these investigations, which sprang 
from a simple but arresting theorem due to Sperner (1928), currently enjoy 
the attention of a large number of mathematicians (among them Erdös, 
Katona, Kleitman, and Lovâsz). 

Extremal problems (and optimization problems) in combinatorics are, in 
fact, strewn as thick on the ground as the autumnal leaves in Vallombrosa. 
Many results assert the equality of a maximum and a minimum, and it is 
therefore hardly surprising that the duality theorem of linear programming 
should have been found an effective tool in combinatorics. Here the subject 
owes much to A. J. Hoffman, H. W. Tucker, and D. Gale and, more recently, 
to D. R. Woodall. I do not believe, however, that the precise nature of the 
links between linear programming and combinatorial mathematics is as yet 
fully understood; to me, at any rate, there is still darkness at the heart of the 
matter. 

Next, I must mention transversal theory and matching theory. (The two 
terms are not entirely synonymous but cover, in part, the same ground.) This 
line of investigation runs straight from Philip Hall's theorem (1935) on 
'distinct representatives'. (There were earlier theorems close to it in substance 
though not in formulation.) Transversal theory is, in essence, the study of 
results based on and extending Hall's theorem. By about 1965, it became 
evident that such results are most appropriately discussed in the context of 
matroid theory. The notion of a 'matroid' had been introduced and subjected 
to a profound analysis by Hassler Whitney in 1935. However, the initial 
impact of Whitney's ideas was almost negligible. The insight that made 
possible the accomodation of transversal theory in the more general setting 
and so gave it an added dimension came from an early and very remarkable 
generalization (1942), due to R. Rado, of Hall's theorem. Rado's work, like 
Whitney's, was to all intents and purposes ignored for a long time; but, with 
the wisdom born of hindsight, we must acknowledge it as the birth certificate 
of modern (i.e. post-1965) transversal theory-an unusual birth certificate, 
admittedly, seeing that it was issued twenty odd years before the birth. By 
now it is clear that the matroid structure and its subsequent extensions 
constitute the really significant objects of study-within this context transver
sal theory is a detail. Matroid theory is at present unmistakably a growth area 
in combinatorics; in this sphere we owe the most decisive contributions to W. 
Tutte. 

Another large and steadily growing component is known as the theory of 
'combinatorial designs'. The genesis of this topic lies in the need to devise and 
assess the significance of statistical experiments, an area of work in which the 



BOOK REVIEWS 385 

strongest initiative came from the British geneticist R. A. Fisher. Since its 
beginnings (in the early twenties), this study has naturally both expanded and 
deepened; it has assimilated many individual results (e.g. on Latin squares, 
Hadamard matrices, and Steiner triples) into a more comprehensive theory; 
and it has established firm contacts with other subjects, such as projective 
geometry. A very interesting and much more recent line of inquiry is 'coding 
theory', whose origin and purpose are indicated sufficiently by the nomencla
ture, and which is closely associated with the analysis of combinatorial 
designs. 

The most vital and exciting aspect of modern combinatorics is possibly the 
research stimulated by a famous theorem of F. P. Ramsey (1930), a theorem 
which possesses both finite and infinite variants. (Earlier but narrower results 
of the same general type had been given by Schur in 1916 and by van der 
Waerden in 1927, but they were not known to Ramsey.) Ramsey needed his 
theorem in the strictly limited context of the study of a logical decision 
problem, and the long-term consequences of his work could not have been 
foreseen by anyone-but such is often the stuff of the very best research. The 
mathematical community, with a few notable exceptions, did not recognize 
the potentialities of Ramsey's theorem for a long time. In the late forties, 
Rado and Erdös mounted a systematic and determined attack on problems 
suggested by the infinite form of Ramsey's theorem. This work resulted in the 
creation of the 'partition calculus', essentially a department of set theory 
which, in particular, raises interesting and difficult questions on the frontier 
between 'ordinary' mathematics and mathematical logic. Thus, certain prob
lems in the partition calculus can only be settled on the basis of the 
continuum hypothesis or the generalized continuum hypothesis. (Perhaps 
future research will be directed to establishing whether the solution of some 
as yet open problems requires, say, the axiom of constructibility or the axiom 
of determinateness.) A methodical and lengthy exposition of the findings of 
Rado and Erdös appeared in this Bulletin in 1956; with this publication, the 
partition calculus was well and truly launched. The finite form of Ramsey's 
theorem was slower to gain detailed attention but, in the last ten years, the 
subject has sprung suddenly into feverish life; and hundreds of variations 
have, probably, by now been composed on this theme. The sum total of the 
resulting knowledge has come to be known as 'Ramsey theory'. Put in 
extravagantly imprecise terms, theorems in this field have something like the 
following form: if S is a certain type of system composed of a sufficiently 
large number of elements, and if the set of these elements is partitioned 
arbitrarily into (a finite number of) classes, then S possesses at least one 
'subsystem' all of whose elements belong to the same class. The relevance of 
such a result for graph theory is fairly plain; and in every case one naturally 
wishes to know how large is 'sufficiently large'. The reader will have guessed 
that many problems which emerge have a quantitative aspect-the 
determination of a 'Ramsey number'. This task is almost invariably extremely 
hard and comparatively few general methods are yet available. Possibly the 
most promising feature of Ramsey theory is the fact that, whereas Ramsey's 
original theorem deals with sets plain and unvarnished, a number of results 
have been proved in recent years involving sets which carry a structure (say 
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that of an abelian group or a vector space). The conceptual enrichment of the 
theory achieved in this way augurs great things for the future. The present 
material, though extensive, is still largely unorganized. However, it is an open 
secret that two American mathematicians propose to give a systematic 
exposition of Ramsey theory in book form. I, for one, am looking forward to 
this publication with an impatience which I make no effort to conceal. 

My rough inventory of combinatorial topics would be certainly incomplete 
if I failed to refer to enumerative analysis. In essence, this goes back to Euler 
(or, perhaps, even to Leibniz) and is concerned with the determination of the 
number of objects of a prescribed type. The formal manipulation of genera
ting functions-usually power series-played a dominant role in classical 
research in this field; this method was given a definitive shape in the two 
volumes of MacMahon's Combinatory analysis (1916). Naturally, the subject 
has not stood still since. More recent writers, in particular Pólya and after 
him de Bruijn, introduced new devices based largely on ideas drawn from the 
theory of groups. At the same time, methods both from asymptotic analysis 
and from the theory of probability were pressed into effective service. 

My remarks convey (I hope) some impression of the great diversity of 
combinatorial problems, but the impression can hardly be adequate since 
almost every topic has fully-fledged sub-topics. (For example, I did not even 
mention the theory of 'tournaments', a special class of graphs whose proper
ties have been explored pretty thoroughly.) Moreover, many questions in 
combinatorics have two aspects, finite and infinite; and the approaches in the 
two cases are often quite different. However, it is not diversity and richness 
alone that characterize modern combinatorics, but equally the fact that the 
subject has now been brought into close relation with other mathematical 
theories. The relevance of linear programming, of projective geometry, and of 
probability theory has already been noted. But, above all, modern combina
torics draws on a whole range of resources from algebra; and groups, finite 
fields, partially ordered sets, Boolean algebras, lattices, vector spaces, and 
categories have all been harnessed successfully to the task of establishing 
combinatorial results. The forging of so many links is itself an index of the 
growing maturity of the subject. 

And now, at long last, I come to the book by Graver and Watkins. The 
authors disclaim any intent at encyclopaedic coverage and, in particular, they 
only concern themselves with finite systems. Their aim is not to treat every 
significant result in (or even every significant area of) combinatorics but 
rather to present the topics of their choice as parts of a unified and coherent 
discipline. In short, they seek to achieve in the domain of finite combinatorics 
what van der Waerden had done with such superb aplomb for algebra. And 
this inevitably raises the question whether the 'subject' (I use inverted 
commas so as not to prejudge the issue) is ripe for such treatment. In a 
strictly literal sense the answer is, of course, 'No'. Combinatorics is far too 
wide-ranging a study to allow, in its entirety, a genuine unification. Even as 
well-established a range of theories as those that constitute analysis would fail 
this test. We must therefore judge the enterprise of Graver and Watkins by 
less comprehensive standards: are the topics discussed by them sufficiently 
developed to permit inclusion within a unified framework? My own tentative 


