Nonconvex minimization problems
HTML articles powered by AMS MathViewer
- by Ivar Ekeland PDF
- Bull. Amer. Math. Soc. 1 (1979), 443-474
References
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908 2. J. Aubin and J. Siegel, Fixed points and stationary points of dissipative multivalued maps, M.R. report 7712, University of Southern California, Los Angeles, 1977.
- J. M. Borwein, Weak local supportability and applications to approximation, Pacific J. Math. 82 (1979), no. 2, 323–338. MR 551692, DOI 10.2140/pjm.1979.82.323 4. M. Crandall, 1976, personal communication.
- Michael Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171–176. MR 203426, DOI 10.1007/BF02760075
- M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375–377. MR 226364, DOI 10.1112/jlms/s1-43.1.375
- Errett Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97–98. MR 123174, DOI 10.1090/S0002-9904-1961-10514-4
- Errett Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 27–35. MR 0154092
- A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605–611. MR 178103, DOI 10.1090/S0002-9939-1965-0178103-8
- H. Brézis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976), no. 3, 355–364. MR 425688, DOI 10.1016/S0001-8708(76)80004-7
- Felix E. Browder, Normal solvability for nonlinear mappings into Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 73–77. MR 270223, DOI 10.1090/S0002-9904-1971-12608-3
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6
- Frank H. Clarke, The maximum principle under minimal hypotheses, SIAM J. Control Optim. 14 (1976), no. 6, 1078–1091. MR 415453, DOI 10.1137/0314067
- Frank H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), no. 2, 165–174. MR 414104, DOI 10.1287/moor.1.2.165
- Frank H. Clarke, Necessary conditions for a general control problem, Calculus of variations and control theory (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), Publ. Math. Res. Center Univ. Wisconsin, No. 36, Academic Press, New York, 1976, pp. 257–278. MR 0638210 17. F. Clarke, Generalized gradients of Lipschitz functionals, MRC Technical Report #1687, University of Wisconsin, Madison, Wis., August 1976.
- Frank H. Clarke, Pointwise contraction criteria for the existence of fixed points, Canad. Math. Bull. 21 (1978), no. 1, 7–11. MR 482714, DOI 10.4153/CMB-1978-002-8
- Ivar Ekeland, Sur les problèmes variationnels, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1057–A1059 (French). MR 310670
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Ivar Ekeland, The Hopf-Rinow theorem in infinite dimension, J. Differential Geometry 13 (1978), no. 2, 287–301. MR 540948
- Ivar Ekeland, Le théorème de Hopf-Rinow en dimension infinie, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 3, A149–A150. MR 440604
- Ivar Ekeland and Gérard Lebourg, Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), no. 2, 193–216 (1977). MR 431253, DOI 10.1090/S0002-9947-1976-0431253-2
- Ivar Ekeland and Roger Temam, Analyse convexe et problèmes variationnels, Collection Études Mathématiques, Dunod, Paris; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974 (French). MR 0463993
- Alan J. Hoffman, On approximate solutions of systems of linear inequalities, J. Research Nat. Bur. Standards 49 (1952), 263–265. MR 0051275, DOI 10.6028/jres.049.027
- Alexander D. Ioffe, Regular points of Lipschitz functions, Trans. Amer. Math. Soc. 251 (1979), 61–69. MR 531969, DOI 10.1090/S0002-9947-1979-0531969-6 27. J. Lasry, personal communication, 1972. 28. G. Lebourg, Problèmes d’optimisation perturbés dans les espaces de Banach, preprint, CEREMADE, Université Paris-Dauphine, 1978.
- Robert H. Martin Jr., Invariant sets for evolution systems, International Conference on Differential Equations (Proc., Univ. Southern California, Los Angeles, Calif., 1974) Academic Press, New York, 1975, pp. 510–536. MR 0467042
- Michael Maschler and Bezalel Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control Optim. 14 (1976), no. 6, 985–995. MR 436101, DOI 10.1137/0314062
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
- Lucien W. Neustadt, Optimization, Princeton University Press, Princeton, N. J., 1976. A theory of necessary conditions; With a chapter by H. T. Banks. MR 0440440
- Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340. MR 158410, DOI 10.1016/0040-9383(63)90013-2
- R. Pallu de la Barrière, Optimal control theory: A course in automatic control theory, W. B. Saunders Co., Philadelphia, Pa.-London, 1967. Translated from the French by Scripta Technica; Translation edited by Bernard R. Gelbaum. MR 0211770
- L. S. Pontrjagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, and E. F. Miščenko, Matematicheskaya teoriya optimal′nykh protsessov, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0166036
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI 10.1002/cpa.3160310203
- Stephen M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), no. 2, 130–143. MR 430181, DOI 10.1287/moor.1.2.130
- R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165–172. MR 158411, DOI 10.1090/S0002-9904-1964-11062-4
- I. Ekeland and M. Valadier, Representation of set-valued mappings, J. Math. Anal. Appl. 35 (1971), 621–629. MR 280677, DOI 10.1016/0022-247X(71)90209-5
Similar Articles
- Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 26A54, 26A96, 34H05, 35K55, 46B99, 47H10, 47H15, 49A10, 49B10, 58B20, 58C20, 93C15
- Retrieve articles in all journals with MSC (1970): 26A54, 26A96, 34H05, 35K55, 46B99, 47H10, 47H15, 49A10, 49B10, 58B20, 58C20, 93C15
Additional Information
- Journal: Bull. Amer. Math. Soc. 1 (1979), 443-474
- MSC (1970): Primary 26A54, 26A96, 34H05, 35K55, 46B99, 47H10, 47H15, 49A10, 49B10, 58B20, 58C20, 93C15
- DOI: https://doi.org/10.1090/S0273-0979-1979-14595-6
- MathSciNet review: 526967