Representations of finite groups of Lie type
Author:
Charles W. Curtis
Journal:
Bull. Amer. Math. Soc. 1 (1979), 721-757
MSC (1970):
Primary 20C15; Secondary 20G05, 20G40
DOI:
https://doi.org/10.1090/S0273-0979-1979-14648-2
MathSciNet review:
537625
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. C. T. Benson, On the generic algebra of a unipotent, Comm. Algebra 5 (1977), no. 8, 841–862. MR 447421, https://doi.org/10.1080/00927877708822198
- 2. Clark T. Benson, The generic degrees of the irreducible characters of 𝐸₈, Comm. Algebra 7 (1979), no. 11, 1199–1209. MR 535928, https://doi.org/10.1080/00927877908822397
- 3. C. T. Benson and C. W. Curtis, On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251–273. MR 304473, https://doi.org/10.1090/S0002-9947-1972-0304473-1
- 4. Clark T. Benson, Larry C. Grove, and David B. Surowski, Semilinear automorphisms and dimension functions for certain characters of finite Chevalley groups, Math. Z. 144 (1975), no. 2, 149–159. MR 382468, https://doi.org/10.1007/BF01190944
- 5. Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
- 6. Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
- 7. Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712
- 8. A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95–104 (French). MR 294349, https://doi.org/10.1007/BF01404653
- 9. N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- 10. R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
- 11. Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
- 12. R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc. (3) 37 (1978), no. 3, 491–507. MR 512022, https://doi.org/10.1112/plms/s3-37.3.491
- 13. Bomshik Chang and Rimhak Ree, The characters of 𝐺₂(𝑞), Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome,1972), Academic Press, London, 1974, pp. 395–413. MR 0364419
- 14. C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66 (French). MR 73602, https://doi.org/10.2748/tmj/1178245104
- 15. C. Chevalley, Classification des groupes de Lie algébriques, Paris, 1956/1958.
- 16. Charles W. Curtis, The Steinberg character of a finite group with a (𝐵,𝑁)-pair, J. Algebra 4 (1966), 433–441. MR 201524, https://doi.org/10.1016/0021-8693(66)90033-0
- 17. Charles W. Curtis, On the values of certain irreducible characters of finite Chevalley groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 343–355. MR 0369561
- 18. Charles W. Curtis, Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan 27 (1975), no. 4, 666–688. MR 399282, https://doi.org/10.2969/jmsj/02740666
- 19. Charles W. Curtis, A note on the connections between the generalized characters of Deligne and Lusztig and the cuspidal characters of reductive groups over finite fields, J. London Math. Soc. (2) 14 (1976), no. 3, 405–412. MR 435238, https://doi.org/10.1112/jlms/s2-14.3.405
- 20. Charles W. Curtis and Timothy V. Fossum, On centralizer rings and characters of representations of finite groups, Math. Z. 107 (1968), 402–406. MR 237665, https://doi.org/10.1007/BF01110070
- 21. C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (𝐵, 𝑁)-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996
- 22. Charles W. Curtis, William M. Kantor, and Gary M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1–59. MR 422440, https://doi.org/10.1090/S0002-9947-1976-0422440-8
- 23. C. W. Curtis and G. I. Lehrer, The homology of certain fixed point sets in the Tits complex of a reductive group over a finite field (to appear).
- 24. P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA 4\frac{1}2. MR 463174
- 25. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, https://doi.org/10.2307/1971021
- 26. Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958. MR 0104735
- 27. Jean Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 5, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (French). MR 0072144
- 28. Hikoe Enomoto, The characters of the finite Chevalley group 𝐺₂(𝑞),𝑞=3^{𝑓}, Japan. J. Math. (N.S.) 2 (1976), no. 2, 191–248. MR 437628, https://doi.org/10.4099/math1924.2.191
- 29. Paul Fong and Gary M. Seitz, Groups with a (𝐵,𝑁)-pair of rank 2. I, II, Invent. Math. 21 (1973), 1–57; ibid. 24 (1974), 191–239. MR 354858, https://doi.org/10.1007/BF01389689
- 30. J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83–119. MR 47038, https://doi.org/10.1007/BF02417955
- 31. J. S. Frame, The characters of the Weyl group 𝐸₈, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 111–130. MR 0269751
- 32. Howard Garland, 𝑝-adic curvature and the cohomology of discrete subgroups of 𝑝-adic groups, Ann. of Math. (2) 97 (1973), 375–423. MR 320180, https://doi.org/10.2307/1970829
- 33. S. I. Gel′fand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83 (125) (1970), 15–41. MR 0272916
- 34. J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447. MR 72878, https://doi.org/10.1090/S0002-9947-1955-0072878-2
- 35. James A. Green, On the Steinberg characters of finite Chevalley groups, Math. Z. 117 (1970), 272–288. MR 280612, https://doi.org/10.1007/BF01109848
- 36. A. Grothendieck, Groupes diagonalisables, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1964, pp. 36 (French). MR 0212024
- 37. Harish-Chandra, Eisenstein series over finite fields, Functional analysis and related fields (Proc. Conf. M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 76–88. MR 0457579
- 38. P. Hoefsmit, Representations of Hecke algebras of finite groups with (B, N)-pairs of classical type, Ph.D. dissertation, Univ. of British Columbia, Vancouver, 1974.
- 39. Robert B. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1973/74), 125–135. MR 360781, https://doi.org/10.1007/BF01189349
- 40. Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215–236 (1964). MR 165016
- 41. Noriaki Kawanaka, A theorem on finite Chevalley groups, Osaka Math. J. 10 (1973), 1–13. MR 332948
- 42. Noriaki Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka Math. J. 12 (1975), no. 2, 523–554. MR 384914
- 43. D. Kazhdan, On 𝜖-representations, Israel J. Math. 43 (1982), no. 4, 315–323. MR 693352, https://doi.org/10.1007/BF02761236
- 44. R. Kilmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. dissertation, M.I.T., 1969.
- 45. Robert W. Kilmoyer, Principal series representations of finite Chevalley groups, J. Algebra 51 (1978), no. 1, 300–319. MR 487479, https://doi.org/10.1016/0021-8693(78)90149-7
- 46. Takeshi Kondo, The characters of the Weyl group of type 𝐹₄, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 145–153 (1965). MR 185018
- 47. Bertram Kostant, Groups over 𝑍, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 90–98. MR 0207713
- 48. G. I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 249–260. MR 384915, https://doi.org/10.1090/S0002-9947-1975-0384915-9
- 49. George Lusztig, The discrete series of 𝐺𝐿_{𝑛} over a finite field, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 81. MR 0382419
- 50. G. Lusztig, On the Green polynomials of classical groups, Proc. London Math. Soc. (3) 33 (1976), no. 3, 443–475. MR 0424959, https://doi.org/10.1112/plms/s3-33.3.443
- 51. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, https://doi.org/10.1007/BF01408569
- 52. G. Lusztig, On the finiteness of the number of unipotent classes, Invent. Math. 34 (1976), no. 3, 201–213. MR 419635, https://doi.org/10.1007/BF01403067
- 53. G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, https://doi.org/10.1007/BF01390002
- 54. G. Lusztig, Unipotent representations of a finite Chevalley group of type E8 (to appear).
- 55. G. Lusztig, On the reflection representation of a finite Chevalley group (to appear).
- 56. George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617
- 57. George Lusztig and Bhama Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), no. 1, 167–171. MR 453886, https://doi.org/10.1016/0021-8693(77)90277-0
- 58. Hideya Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258 (1964), 3419–3422 (French). MR 183818
- 59. Forrest Richen, Modular representations of split 𝐵𝑁 pairs, Trans. Amer. Math. Soc. 140 (1969), 435–460. MR 242972, https://doi.org/10.1090/S0002-9947-1969-0242972-1
- 60. Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27–56. MR 340446, https://doi.org/10.2307/1970876
- 61. Louis Solomon, The Steinberg character of a finite group with 𝐵𝑁-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 213–221. MR 0246951
- 62. Louis Solomon, On the affine group over a finite field, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 145–147. MR 0318287
- 63. Louis Solomon, The affine group. I. Bruhat decomposition, J. Algebra 20 (1972), 512–539. MR 306349, https://doi.org/10.1016/0021-8693(72)90071-3
- 64. T. A. Springer, Cusp forms for finite groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 97–120. MR 0263942
- 65. T. A. Springer, On the characters of certain finite groups, Proc. Summer School, Group Representations, Budapest, 1971.
- 66. T. A. Springer, Caractères de groupes de Chevalley finis, Sem. Bourbaki, no. 429, 1972/73.
- 67. T. A. Springer, Relèvement de Brauer et représentations paraboliques de GL(F), Sem. Bourbaki, no. 441, 1973/74.
- 68. T. A. Springer, Generalization of Green’s polynomials, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 149–153. MR 0327926
- 69. T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, https://doi.org/10.1007/BF01390009
- 70. T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- 71. Bhama Srinivasan, The characters of the finite symplectic group 𝑆𝑝(4,𝑞), Trans. Amer. Math. Soc. 131 (1968), 488–525. MR 220845, https://doi.org/10.1090/S0002-9947-1968-0220845-7
- 72. Bhama Srinivasan, On the Steinberg character of a finite simple group of Lie type, J. Austral. Math. Soc. 12 (1971), 1–14. MR 0291317
- 73. Bhama Srinivasan, Green polynomials of finite classical groups, Comm. Algebra 5 (1977), no. 12, 1241–1258. MR 498889, https://doi.org/10.1080/00927877708822217
- 74. R. Steinberg, A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274–282. MR 43784, https://doi.org/10.1090/S0002-9947-1951-0043784-0
- 75. Robert Steinberg, Prime power representations of finite linear groups. II, Canadian J. Math. 9 (1957), 347–351. MR 87659, https://doi.org/10.4153/CJM-1957-041-1
- 76. B. Srinivasan, Lectures on Chevalley groups, Yale University, 1967.
- 77. Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- 78. D. Surowski, Irreducible characters of BN-pairs of exceptional type, Ph.D. dissertation, Univ. of Arizona, 1975.
- 79. David B. Surowski, Representations of a subalgebra of the generic algebra corresponding to the Weyl group of type 𝐹₄, Comm. Algebra 5 (1977), no. 8, 873–888. MR 442104, https://doi.org/10.1080/00927877708822200
- 80. David B. Surowski, Degrees of irreducible characters of (𝐵,𝑁)-pairs of types 𝐸₆ and 𝐸₇, Trans. Amer. Math. Soc. 243 (1978), 235–249. MR 502905, https://doi.org/10.1090/S0002-9947-1978-0502905-2
- 81. Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099
- 82. André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508. MR 29393, https://doi.org/10.1090/S0002-9904-1949-09219-4
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 20C15, 20G05, 20G40
Retrieve articles in all journals with MSC (1970): 20C15, 20G05, 20G40
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1979-14648-2