A TOPOLOGICAL CHARACTERIZATION OF REAL ALGEBRAIC VARIETIES

BY SELMAN AKBULUT AND HENRY C. KING

We show that if a smooth locally conelike stratified set admits a certain kind of topological resolution then it is homeomorphic to a real algebraic set, i.e. zeros of polynomial functions (this generalizes [AK₁], [AK₂]). We expect that the algebraic resolution of singularities [H] implies that every algebraic set admits such a topological resolution, hence it is reasonable to suspect that we have a complete topological characterization of real algebraic sets.

Examples of some stratified sets admitting such a topological resolution are spaces which we call \(A_k \)-spaces, \(k = 0, 1, 2, \ldots \). We define \(A_k \)-spaces inductively by saying that \(A_0 \)-spaces are smooth compact manifolds, and an \(A_k \)-space is a compact smooth stratified set \(X \) with a trivialization of a neighborhood of each stratum \(X_p, h_i: X_i \times \text{cone}(\Sigma_i) \to X \) where \(\Sigma_i \) is an \(A_{k-1} \)-space which bounds a compact \(A_{k-1} \)-space with boundary (\(h_i \) required to be compatible with the trivializations of neighborhoods of the strata of \(\Sigma_i \)).

The topological resolution of an \(A_k \)-space \(X \) is obtained by a sequence of 'blow ups' as follows: take a lowest dimensional stratum \(X_i \) (the 'center' of the 'blow ups') with trivialization \(h_i: X_i \times \text{cone}(\Sigma_i) \to X \) and replace \(h_i(X_i \times \text{cone}(\Sigma_i)) \) by \(X_i \times W_i \) where \(W_i \) is a compact \(A_{k-1} \)-space which \(\Sigma_i \)

Received by the editors September 4, 1979.

Key words and phrases. Algebraic sets, resolutions, \(A_k \)-spaces, stratifications, P.L. manifolds.

© 1980 American Mathematical Society
0002-9904/80/0000-0005/01.75
bounds. We have a map from the new space to X which is the identity outside image (h_i) and which collapses $X_i \times S_i$ to $X_i \times \ast$ where S_i is a spine of W_i and \ast is the vertex of cone(Σ_i). After a finite number of such blow ups we obtain a smooth manifold \tilde{X} and a ‘resolution’ $\tilde{X} = Z_n \rightarrow Z_{n-1} \rightarrow \cdots \rightarrow Z_0 = X$.

We say X is an A-space if it is an A_k-space for some k. In particular we prove:

Theorem. The interior of any compact A-space is homeomorphic to a real algebraic set. Furthermore the natural stratification on this algebraic set coincides with the stratification of the A-structure.

One of the reasons A-spaces are of interest is that Akbulut and Taylor have shown that any compact P.L. manifold has the structure of an A-space [AT]

Corollary. The interior of any compact P.L. manifold is P.L. homeomorphic to a real algebraic set.

Sketch of Proof. Take a resolution of a compact A_k-space X: $Z_n \rightarrow Z_{n-1} \rightarrow \cdots \rightarrow Z_0 = X$ where Z_n is a smooth compact manifold. Each $Z_{i+1} \rightarrow Z_i$ has a certain ‘center’ a smooth manifold $X_i \subset Z_i$ along which a topological ‘blow up’ occurs. We construct a tower of nonsingular varieties $V_n \rightarrow V_{n-1} \rightarrow \cdots \rightarrow V_0 = \mathbb{R}^n$ with $X_i \subset V_i$ as a nonsingular subvariety and imbeddings $Z_i \subset V_i$ which commute with projections (i.e. all the above maps given by arrows) and are in some sense ‘stable’ over the projections.

This means that if Z_n is moved by a small isotopy in V_n the image of Z_n under the composite projection $\pi: V_n \rightarrow V_0$ is isotopic to X. We then approximate the submanifold $Z_n \subset V_n$ by an algebraic set Q; and then ‘blow down’ Q algebraically to an algebraic set V which is homeomorphic to $\pi(Q)$, which is in turn homeomorphic to X.

Each V_{i+1} and the projection $V_{i+1} \xrightarrow{\pi} V_i$ is obtained by a certain algebraic ‘multiblowing-up’ process from V_i along X_i. X_i is a lowest dimensional stratum of Z_i. Given $Z_i \subset V_i$ the imbedding $Z_{i+1} \subset V_{i+1}$ is obtained roughly as follows: Let $h_i: X_i \times \text{cone}(\Sigma_i) \rightarrow Z_i$ be the neighborhood trivialization of X_i, and W_i a compact A_k-space which Σ_i bounds; imbed $X_i \times W_i$ into V_{i+1} so that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(a) $X_i \times W_i$ is transverse to $\pi_i^{-1}(X_i)$,
(b) $\pi_i^{-1}(X_i) \cap (X_i \times W_i) = X_i \times (a \text{ spine of } W_i)$,
(c) $\pi_i(X_i \times W_i) \approx h_i(X_i \times \text{cone}(\Sigma_i))$.

Then extend this imbedding to an imbedding of Z_{i+1} into V_{i+1} by simply lifting the imbedding $Z_i \cdot \text{image}(h_i) (= Z_{i+1} - X_i \times W_i)$ to V_{i+1} via π_i so that $\pi_i(Z_{i+1}) \approx Z_i$. In particular, along the way we prove that the A_k-space Σ_i, which bounds, necessarily has to bound an A_k-space W_i, which has a spine consisting of transversally intersecting codimension one A_k-subspaces without boundaries. Choosing such W_i's enables us to show (a), (b), (c). Details are long and geometric in nature, they will appear in [AK$_3$]. The proof applies to spaces more general than A-spaces, which leads us to believe that a satisfactory topological classification theorem for real algebraic sets is within reach.

REFERENCES

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742