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and informative, it leaves the reader with a curious sense of being a spectator 
and not a participant. 

The LIN PACK user's guide is at the opposite extreme. At its core are 129 
pages 'listing' 50 subroutines. These are written in standard Fortran and are 
also available on magnetic tape, hence easily executable at most computing 
centers. The Guide's main purpose is to document these programs. Written 
for computing professionals, it has the same sparkle as a manual explaining to 
expert repair mechanics the workings of an automobile engine. 

Yet it is an important and meaty document, giving an authoritative picture 
of current mathematical software technology. Its programs have been exhaus
tively tested at a number of computing centers on a variety of machines, and 
can be certified as optimal (in the present state of the art) for solving many 
problems of linear algebra. Many millions of dollars of computing and 
programming time will be saved by using them! (The best direct and iterative 
methods for solving discretizations of linear elliptic boundary value problems 
are not included, however.) 

Though the three books differ in most respects, they share a weakness: 
none of them points out the limitations of the methods that it explains. Thus 
the UNPACK user's guide nowhere mentions the fact that the rank of a 
general matrix cannot be computed in 'real arithmetic'; Nash does not 
comment on the possibility that his minimization algorithms fail for some 
functions (e.g. for 2x2 — TTX — 5 exp[-(103.x)2]). Even Henrici, whose skill
fully written programs would surely have delighted Euler or Gauss, fails to 
observe that the coefficients of his power series are not expressed on a 
computer as rational numbers, hence cannot easily be recognized as generat
ing functions. 

By making allowances for this minor weakness, the curious reader who 
browses through these books can acquire a realistic picture of the state of 
numerical mathematics today. 

GARRETT BIRKHOFF 
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Topologie und analysis, by Bernhelm Booss, Springer-Verlag, Berlin, Heidel
berg, New York, 1977, xiv + 352 pp., $17.50. 

The Atiyah-Singer index theorem; an introduction, by Patrick Shanahan, 
Lecture Notes in Math., vol. 638, Springer-Verlag, Berlin, Heidelberg, New 
York, 1978, v + 224 pp. 

At the beginning of the twentieth century, mathematics had been greatly 
enlarged by the ideas of a number of giants, including Riemann, Cantor, 
Poincaré and Hilbert. Considerable effort was then expended on understand
ing and developing the whole new areas of mathematics which had been 
created. And this plus the general trend toward axiomatization meant that a 
parochial view largely dominated mathematics. In the last couple of decades, 
however, that has changed and some of the most exciting developments have 
come from the interaction, often in unexpected ways, of different parts of 
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mathematics. Perhaps the most striking example of this and certainly one of 
the most important results of the last few decades is the index theorem of 
Atiyah and Singer. 

In the early study of concrete operators by Fredholm, Hilbert, Riesz and 
others at the beginning of this century, it was shown that an operator had 
only the zero vector in its null space if and only if the operator was onto 
(which is the so-called Fredholm alternative). This resulted from the limited 
class of operators being investigated (for example, integral operators defined 
by a square integrable kernel), and indeed, when integral operators with 
singular kernels were allowed, this was no longer the case. F. Noether and 
others, however, found that the difference between the dimensions of the null 
space and the co-null space (or the orthogonal complement of the range), 
which before had been zero, was still expressible in terms of topological 
invariants of the data used to define the operator. For example, Krein showed 
for Wiener-Hopf operators that the index is minus the winding number of the 
Fourier transform of the kernel function which defines it. Historically, 
operators defined by singular kernels of Cauchy type were considered earlier 
by F. Noether, Plemelj, Carleman and Giraud on the circle and line and 
eventually by Calderón-Zygmund in R". Gradually the abstract class of 
Fredholm operators was identified as those with closed range and finite 
dimensional null space and co-null space and the analytical index of such 
operators was defined to be the difference of these dimensions. Fredholm 
theory was largely codified for operators on Hilbert space (and extended to 
operators on Banach spaces) in a classic paper of Gohberg and Krein. Using 
a result of Atkinson the Fredholm operators on a complex Hilbert space were 
shown to be precisely those which are invertible modulo the ideal of compact 
operators. Recall that an operator on a complex Hilbert space is compact if it 
is the norm-limit of finite rank operators. Hence, a compact operator on an 
infinite dimensional space can be viewed as negligible and therefore an 
operator is Fredholm if and only if it is almost invertible. Moreover, index 
was shown to be a continuous homomorphism to Z and since Z is discrete it 
follows that index is constant on components. In fact, for operators on a 
complex Hilbert space index determines the components and thus is the only 
perturbation invariant for the set of Fredholm operators. 

Although the study of partial differential equations is almost as old as 
analysis, an operator theoretic point of view is of relatively recent origin. The 
early study of partial differential equations arose from physics and most 
effort was directed toward understanding the solution of the equations of 
physics. Even so, by this century the consideration of partial differential 
equations defined on manifolds was unavoidable. This resulted not only from 
the needs of physics but also from the study of such areas of mathematics as 
global differential geometry. In particular, Hodge theory can be viewed as the 
study of Laplace's equation on a manifold. And based on results of Weyl and 
many other mathematicians it was realized that a large class of operators 
defined by partial differential equations on compact manifolds were in fact 
Fredholm operators and hence had an index. 

A differential operator acts naturally on the space of C °° functions but can 
be extended naturally to define a bounded operator between Sobolev spaces 
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of the appropriate order. Basically the Sobolev space Hk(M) on a manifold 
M is defined by considering functions which possess distributional derivatives 
in L2 up to order k and is endowed with a norm which takes into account the 
usual L2-norm of all these derivatives. Then Hk(M) is a Hilbert space. If P is 
a differential operator of order m defined on M, then P defines a bounded 
operator from Hk(M) to Hk~m(M). Moreover, it follows from a result of 
Rellich-Sobolev-Kondrashov that a differential operator of order less than m 
defines a compact operator from Hk(M) to Hk~m(M). Hence ignoring the 
lower order terms of P only amounts to a compact perturbation of the orginal 
operator. Therefore we consider the homogeneous part Pm of P consisting of 
the terms of order m and the action of Pm at a point can be approximated on 
the tangent space by the Fourier transform of a multiplier on the cotangent 
space. This function is called the principal symbol oP of P. If M = R" and P 
has constant coefficients, then oP is just the polynomial obtained by replacing 
id/dxj by ^.. More generally, if E and F are smooth vector bundles over M, 
then differential operators acting between the C00 cross-sections can be 
defined and in general, the principal symbol aP of such an operator P is a 
cross-section of the bundle Hom(is, F) over the cotangent bundle T*(M), 
where Ë and F denote the pullbacks of E and F over M to T*(M). The 
differential operator P is said to be elliptic if aP(x, £) is an isomorphism for 
each (x, © in T*(M), £ =̂  0. 

If M is a compact manifold without boundary, then the operator P is 
Fredholm if and only if it is elliptic. Since the lower order terms of P define a 
compact operator, the symbol determines T up to a compact perturbation 
and since index is continuous, it follows that only the homotopy type of aP is 
important. Thus we arrive at the problem of calculating the index of an 
elliptic differential operator in terms of topological invariants of its symbol. 
This is essentially the problem raised by Gelfand in his seminar in the late 
fifties, although he considered specifically elliptic boundary-value problems. 
Early results on this were obtained by Agranowich, Dynin and Volpert. 
Seeley also obtained results for the index of singular integral operators on 
Euclidean space generalizing those of Michlin and Gohberg. Then in 1963 
Atiyah and Singer formulated and proved a formula for the index of elliptic 
differential operators on compact manifolds. Their motivation included the 
idea of giving an alternate proof of the Hirzebruch signature theorem by 
expressing signature as the index of a specific operator and then calculating 
the index in terms of topological invariants. In addition, they used 
Hirzebruch's proof of his Riemann-Roch theorem as a model for the proof of 
their index theorem. Although only an outline of the proof was given in their 
announcement, complete proofs were quickly provided in the published 
seminar notes from the Palais seminar at the Institute for Advanced Study in 
Princeton and the Cartan-Schwartz seminar in Paris the following year. 

The first proof of Atiyah and Singer involved mostly ordinary cohomology 
theory, characteristic classes, cobordism and integro-differential operators. 
Their index formula involves the Todd class of the tangent bundle of the 
manifold which is a rational cohomology class and the Chern character of the 
bundle defined on the Thorn space using the symbol aP restricted to the 
cosphere bundle as a clutching function. Using deep results from cobordism 
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theory, eventually one is able to reduce the proof of the general index formula 
to that of calculating the index of a generalized signature operator. 

In the course of this proof two topics were touched upon which have 
undergone tremendous development in the intervening years. Although both 
had been introduced earlier, their rapid dissemination and development were 
spurred, at least in part, by their connection with the index theorem. Follow
ing Grothendieck's ideas in algebraic geometry, Atiyah and Hirzebruch 
studied the ring completion K(X) of the collection of vector bundles on a 
space X under Whitney sum and tensor product and showed its importance 
in many problems in topology. The periodicity theorem of Bott was reinter
preted to form the cornerstone of ^-theory showing that a generalized 
cohomology theory is obtained. Since the index theorem provides a homo
morphism from the bundles on the Thorn space defined by the symbols of 
differential operators to Z, it can be factored through the associated üC-group. 
Now not all elements of this group arise as the bundle defined by the symbol 
of a differential operator. However, there is a generalization called pseudo-
differential operator due to Kohn-Nirenberg and Hörmander which possesses 
many of the same properties as differential operators, including a symbol, 
which corrects this. And when this symbol is invertible, the operator is 
Fredholm and hence possesses an index. Since the bundles defined by the 
symbols of pseudo-differential operators generate the A"-group we get a 
homomorphism to the integers called the analytical index. By the time Atiyah 
and Singer gave a detailed exposition of their work, they had obtained a new 
expression for the index formula in terms of ^-theory and a new proof. For 
the formula they defined topologically another homomorphism from the 
/T-group to Z called the topological index and they then proceeded to show 
that the two indices were equal. Their proof was modeled on Grothendieck's 
proof of his generalization of the Hirzebruch-Riemann-Roch theorem. A key 
step in the proof involved embedding the general case in Euclidean space and 
thereby reducing the proof to calculating the index of classical differential 
operators defined on open subsets of Euclidean space. The cohomological 
version of the formula can be obtained as an exercise in algebraic topology 
relating ^-theory to ordinary cohomology theory. 

There were several other developments in the sixties which we should 
mention. First, the index theorem was extended to operators which commute 
with a compact Lie group. The index in this case is an element of the 
representation ring of the group and equivariant ^-theory is the relevant tool 
for the proof. This latter notion was developed largely by Atiyah and Segal 
with this application in mind. Second, an index theorem for families was also 
proved in which the operator depends continuously on a parameter in a 
compact space. At each point one has a Fredholm operator and using the fact 
proved by Atiyah and Janich that the Fredholm operators on complex 
Hubert space are a classifying space for ^-theory, an analytical index is 
obtained which is an element of the AT-group of the parameter space. A 
topological description of this element completes the index formula. Further, 
various fixed point theorems in this context were proved by Atiyah, Bott and 
Singer. Finally, many applications of this work were obtained especially to 
topology and geometry. 
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In the early seventies a new approach to the index theorem was found by 
Atiyah, Patodi, and Singer based on a study of the heat equaton on mani
folds. This involved considerably more analysis than earlier proofs and, in 
addition, local differential geometry. It increased, however, the number of 
areas that the index theorem makes contact with. Finally, Fedosov has 
carried this development further to obtain a proof based almost entirely on 
operator theory and the theory of pseudo-differential operators. It involves 
the direct construction of the Fredholm inverse by writing out its total 
symbol. 

A different development can be traced to an attempt of Atiyah at giving a 
concrete realizaton of the homology theory dual to AT-theory. He introduced 
the notion of a generalized elliptic operator and showed that they could be 
used to form the cycles for the AT-homology groups. What the particular 
equivalence was, was left open and was resolved independently by Kasparov 
and Brown, Fillmore and this reviewer. In the latter approach concrete 
elements for ^-homology were shown to be provided by C*-algebra exten
sions and important relations with operator theory were established. In 
Kasparov's approach connections with rather important problems in alge
braic topology were a central consideration. In both cases a version of the 
index theorem is apparent in which an elliptic pseudo-differential operator is 
used to define directly an element of the ^-homology group. This is the 
"analytical index" and the index theorem consists of describing that element 
topologically. Further there is an extension of the index theorem to a class of 
singular spaces by Baum, Fulton, and McPherson. Their methods are based 
on the Grothendieck proof. Finally, Connes has extended the index theorem 
to differential operators on a foliation using heat equation methods. The 
operators in this instance are Fredholm relative to a II°°-factor and have a 
real valued index. 

The theory surrounding the index theorem has had important repercussions 
in much of mathematics in addition to being a very important result in its 
own right. Moreover, many applications have been made and the story is far 
from over. 

How does one go about learning about the index theorem? Although the 
original papers are clear and incisive and a must for any serious student, the 
prerequisites for reading them are considerable. The two books under review 
offer different approaches to the index theorem. 

In the book of Booss all the prerequisites are presented in considerable 
detail including many heuristic remarks. This means Booss develops Fred
holm theory, pseudo-differential operators, and algebraic topology starting at 
a level more or less appropriate to an advanced graduate student. I can 
recommend this book to advanced topics courses in which the students and 
instructor might feel obliged to consult other sources along the way. It might 
also be satisfactory for good students to study on their own. Only the 
embedding proof of the index theorem is presented in detail although other 
proofs are outlined. To complete such a course of study, the original papers 
should then be read. I believe the book would be quite satisfactory for this. 

The book of Shanahan is directed more at mathematicians who want to 
know something about the index theorem and its applications. The classical 
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examples named after de Rham, Dolbeault, Hodge and Dirac are presented 
in considerable detail. The embedding proof of the index theorem is outlined 
along with that of the equivariant index theorem and the fixed point theorem. 
Various applications of these results are also presented. The book is quite 
successful in doing what it attempts. 

While the index theorem has not yet made it into graduate texts, these two 
books are a good beginning and given the ongoing importance of the index 
theorem should be useful to those wanting to learn about it. 

RONALD G. DOUGLAS 
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Probabilities and potential, by Claude Dellacherie and Paul-André Meyer, 
Mathematics Studies, Volume 29, North-Holland Publishing Company, 
Amsterdam and New York, 1978, xii + 190 pp., $29.00. 

In the preface of his 1953 book [3], J. L. Doob wrote "Probability is simply 
a branch of measure theory, with its own special emphasis and field of 
application . . . . Using various ingenious devices, one can drop the interpre
tation of sample sequences and functions as ordinary sequences and func
tions, and treat probability theory as the study of systems of distribution 
functions. • • • such a treatment • • • results in a spurious simplification of 
some parts of the subject, and a genuine distortion of all of it." I believe that 
today the vast majority of probabilists would agree with Doob's statement of 
more than a quarter of a century ago. The thought of trying to state, let alone 
explain, the strong law of large numbers, for example, without using sample 
sequences seems ludicrous. The mathematical model commonly accepted 
today for treating sample sequences and functions is measure theory via the 
Kolmogorov axioms. As long as one deals with sequences most probabilists 
are happy with the measure theoretic foundations of the subject. However, 
this sense of contentment is rapidly dissipated when treating sample func
tions; that is, uncountable families of random variables. This is because, until 
quite recently, most probabilists were uncomfortable with the type of measure 
theory that is required to discuss sample functions. 

The study of sample functions of a stochastic process has a long and varied 
history. In [10], Loève has emphasized that Levy always thought in terms of 
sample paths and that this approach led to his beautiful results beginning in 
the middle 1930's on the structure of additive processes, the fine structure of 
Brownian paths, and the bizarre (at the time they were published in 1951) 
possibilities for the sample paths of a continuous parameter Markov chain. In 
spite of Wiener's construction of Brownian motion in the 1920's, there was 
hardly any theory of continuous parameter stochastic processes in 1935. 
Beginning about 1936 and culminating in his 1953 book, Doob developed a 
rigorous foundation for treating such questions. At about the same time 
Doob and later Snell were establishing the sample function properties of 
martingales and submartingales which were to be fundamental for later 
developments. These results were given a definitive treatment in the 1953 
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