Absence of singular continuous spectrum in $N$-body quantum systems
HTML articles powered by AMS MathViewer
- by P. Perry, I. M. Sigal and B. Simon PDF
- Bull. Amer. Math. Soc. 3 (1980), 1019-1023
References
- E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Comm. Math. Phys. 22 (1971), 280–294. MR 345552, DOI 10.1007/BF01877511
- M. Combescure and J. Ginibre, On the negative point spectrum of quantum mechanical three-body systems, Ann. Physics 101 (1976), no. 2, 355–379. MR 438951, DOI 10.1016/0003-4916(76)90015-4
- L. D. Faddeev, Mathematical aspects of the three-body problem in the quantum scattering theory, Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1965. Translated from the Russian by Ch. Gutfreund; Translation edited by L. Meroz. MR 0221828
- George A. Hagedorn, Asymptotic completeness for a class of four particle Schrödinger operators, Bull. Amer. Math. Soc. 84 (1978), no. 1, 155–156. MR 496030, DOI 10.1090/S0002-9904-1978-14449-8
- Rafael Jose Iorio Jr. and Michael O’Carroll, Asymptotic completeness for multi-particle Schroedinger Hamiltonians with weak potentials, Comm. Math. Phys. 27 (1972), 137–145. MR 314392, DOI 10.1007/BF01645616
- Richard B. Lavine, Commutators and scattering theory. I. Repulsive interactions, Comm. Math. Phys. 20 (1971), 301–323. MR 293945, DOI 10.1007/BF01646626 7. M. Loss and I. M. Sigal, Many body scattering with quasibound states (in preparation).
- E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), no. 3, 391–408. MR 603501, DOI 10.1007/BF01942331 9. P. A. Perry, I. M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators (in preparation).
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- I. M. Sigal, Mathematical foundations of quantum scattering theory for multiparticle systems, Mem. Amer. Math. Soc. 16 (1978), no. 209, iii+147. MR 508478, DOI 10.1090/memo/0209
- I. M. Sigal, On quantum mechanics of many-body systems with dilation-analytic potentials, Bull. Amer. Math. Soc. 84 (1978), no. 1, 152–154. MR 459410, DOI 10.1090/S0002-9904-1978-14448-6
- Barry Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), no. 3, 259–274. MR 496073, DOI 10.1007/BF01614550 15. D. R. Yafaev, On the point spectrum in the quantum-mechanical many-body problem, Math. USSR Izv. 10 (1976), 861-896.
Additional Information
- Journal: Bull. Amer. Math. Soc. 3 (1980), 1019-1023
- MSC (1970): Primary 81A81; Secondary 35P05
- DOI: https://doi.org/10.1090/S0273-0979-1980-14838-7
- MathSciNet review: 585181