Definable degrees and automorphisms of $\mathcal {D}$
HTML articles powered by AMS MathViewer
- by Leo Harrington and Richard A. Shore PDF
- Bull. Amer. Math. Soc. 4 (1981), 97-100
References
- Leo A. Harrington and Alexander S. Kechris, A basis result for $\Sigma ^{0}_{3}$ sets of reals with an application to minimal covers, Proc. Amer. Math. Soc. 53 (1975), no. 2, 445–448. MR 398832, DOI 10.1090/S0002-9939-1975-0398832-7
- Carl G. Jockusch Jr. and Robert I. Soare, Minimal covers and arithmetical sets, Proc. Amer. Math. Soc. 25 (1970), 856–859. MR 265154, DOI 10.1090/S0002-9939-1970-0265154-X
- S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407. MR 61078, DOI 10.2307/1969708
- A. H. Lachlan, Distributive initial segments of the degrees of unsolvability, Z. Math. Logik Grundlagen Math. 14 (1968), 457–472. MR 237331, DOI 10.1002/malq.19680143002
- Anil Nerode and Richard A. Shore, Second order logic and first order theories of reducibility orderings, The Kleene Symposium (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1978), Studies in Logic and the Foundations of Mathematics, vol. 101, North-Holland, Amsterdam-New York, 1980, pp. 181–200. MR 591882
- Anil Nerode and Richard A. Shore, Reducibility orderings: theories, definability and automorphisms, Ann. Math. Logic 18 (1980), no. 1, 61–89. MR 568916, DOI 10.1016/0003-4843(80)90004-2
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR 0224462 [1967a] H. Rogers, Jr., Some problems of definability in recursive function theory, Sets Models and Recursion Theory, Proc. of the Summer School in Mathematical Logic and Tenth Logic Colloquium Lercester August—September 1965, Crossley, J. N. (ed.), North-Holland, Amsterdam.
- Gerald E. Sacks, On the degrees less than 0′, Ann. of Math. (2) 77 (1963), 211–231. MR 146078, DOI 10.2307/1970214
- Richard A. Shore, The homogeneity conjecture, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 9, 4218–4219. MR 543312, DOI 10.1073/pnas.76.9.4218
- Richard A. Shore, On homogeneity and definability in the first-order theory of the Turing degrees, J. Symbolic Logic 47 (1982), no. 1, 8–16. MR 644748, DOI 10.2307/2273376
- Stephen G. Simpson, First-order theory of the degrees of recursive unsolvability, Ann. of Math. (2) 105 (1977), no. 1, 121–139. MR 432435, DOI 10.2307/1971028 [1977a] S. G. Simpson, Degrees of unsolvability: A survey of results, Handbook of Mathematical Logic, J. Barwise (ed.), North-Holland, Amsterdam.
Additional Information
- Journal: Bull. Amer. Math. Soc. 4 (1981), 97-100
- MSC (1980): Primary 03030; Secondary 03055
- DOI: https://doi.org/10.1090/S0273-0979-1981-14871-0
- MathSciNet review: 590819