The stability of the Bergman kernel and the geometry of the Bergman metric
HTML articles powered by AMS MathViewer
 by Robert E. Greene and Steven G. Krantz PDF
 Bull. Amer. Math. Soc. 4 (1981), 111115
References

1. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Soc. Mat. de France Asterisque 3435 (1976), 123164.
 Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. MR 575736, DOI 10.1002/cpa.3160330404
 Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
 G. B. Folland and J. J. Kohn, The Neumann problem for the CauchyRiemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588 5. R. E. Greene and S. G. Krantz, Stability of the Bergman kernel and curvature properties of bounded domains, Proc. Princeton Conf. on Several Complex Variables, 1979 (to appear). 6. R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the (partial d) equation, and stability of the Bergman kernel, Advances in Math, (to appear).
 Robert E. Greene and Steven G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425–446. MR 682655, DOI 10.1007/BF01457445
 M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978), no. 2, 223–230. MR 540941, DOI 10.4310/jdg/1214434487
 Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 294694, DOI 10.1007/BF01419622
 Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275–282. MR 463506, DOI 10.1512/iumj.1978.27.27020 11. Lu QiKeng (= K. H. Look), On Kähler manifolds with constant negative curvature, Acta Math. Sinica 16 (1966), 269281 (Chinese) = Chinese Math. 9 (1966), 283298.
 G. D. Mostow and Yum Tong Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. (2) 112 (1980), no. 2, 321–360. MR 592294, DOI 10.2307/1971149
 Yum Tong Siu, The complexanalyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73–111. MR 584075, DOI 10.2307/1971321
 B. Wong, Characterization of the unit ball in $\textbf {C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 492401, DOI 10.1007/BF01403050
Additional Information
 Journal: Bull. Amer. Math. Soc. 4 (1981), 111115
 MSC (1980): Primary 32H10, 35N15; Secondary 32G05, 32H05, 53C55
 DOI: https://doi.org/10.1090/S027309791981148746
 MathSciNet review: 590822