On the local monodromy of a variation of Hodge structure
HTML articles powered by AMS MathViewer
- by Eduardo Cattani and Aroldo Kaplan PDF
- Bull. Amer. Math. Soc. 4 (1981), 116-118
References
- Eduardo H. Cattani and Aroldo G. Kaplan, The monodromy weight filtration for a several variables degeneration of Hodge structures of weight two, Invent. Math. 52 (1979), no. 2, 131–142. MR 536076, DOI 10.1007/BF01403060
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780 3. P. Griffiths, Periods of integrals on algebraic manifolds. I, II, Amer. J. Math. 90 (1968), 568-626; 805-865.
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 282990, DOI 10.1007/BF02684654
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 429885, DOI 10.1007/BF01403146
Additional Information
- Journal: Bull. Amer. Math. Soc. 4 (1981), 116-118
- MSC (1980): Primary 14C30, 32G20; Secondary 22E40, 32M10
- DOI: https://doi.org/10.1090/S0273-0979-1981-14876-X
- MathSciNet review: 590823