For $n > 3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets
Author:
Dennis Sullivan
Journal:
Bull. Amer. Math. Soc. 4 (1981), 121-123
MSC (1980):
Primary 28D10
DOI:
https://doi.org/10.1090/S0273-0979-1981-14880-1
MathSciNet review:
590825
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
[B] S. Banach, Sur le problème de la mesure, S. Banach Oeuvres, vol I, Warszawa, 1967, pp. 318-322.
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Joseph Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), no. 2, 623–636. MR 610970, DOI https://doi.org/10.1090/S0002-9947-1981-0610970-7
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 28D10
Retrieve articles in all journals with MSC (1980): 28D10