Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The tetragonal construction
HTML articles powered by AMS MathViewer

by Ron Donagi PDF
Bull. Amer. Math. Soc. 4 (1981), 181-185
References
  • A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 189–238. MR 220740
  • Arnaud Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), no. 2, 149–196. MR 572974, DOI 10.1007/BF01418373
  • Arnaud Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 309–391 (French). MR 472843, DOI 10.24033/asens.1329
  • C. Herbert Clemens, Double solids, Adv. in Math. 47 (1983), no. 2, 107–230. MR 690465, DOI 10.1016/0001-8708(83)90025-7
  • Ron Donagi and Roy Smith, The degree of the Prym map onto the moduli space of five-dimensional abelian varieties, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 143–155. MR 605340
  • David Mumford, Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350. MR 0379510
  • Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
  • Sevin Recillas, Jacobians of curves with $g^{1}_{4}$’s are the Prym’s of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 1, 9–13. MR 480505
  • [T] A. Tjurin, Geometry of the Poincaré theta-divisor of a Prym variety, Math. U. S. S. R. Izv. 9 (1975), 951-986. [W] W. Wirtinger, Untersuchugen über Thetafunctionen, Teubner, Berlin, 1895.
Similar Articles
Additional Information
  • Journal: Bull. Amer. Math. Soc. 4 (1981), 181-185
  • MSC (1980): Primary 14H15, 14H30, 14K10, 32G20, 14H40
  • DOI: https://doi.org/10.1090/S0273-0979-1981-14875-8
  • MathSciNet review: 598683