Ordinary $RO\left( G \right)$-graded cohomology
Authors:
G. Lewis, J. P. May and J. McClure
Journal:
Bull. Amer. Math. Soc. 4 (1981), 208-212
MSC (1980):
Primary 55N25, 55P42, 57T15
DOI:
https://doi.org/10.1090/S0273-0979-1981-14886-2
MathSciNet review:
598689
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. MR 0116341
- 2. Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062
- 3. Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- 4. Andreas W. M. Dress, Contributions to the theory of induced representations, Algebraic 𝐾-theory, II: “Classical” algebraic 𝐾-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 183–240. Lecture Notes in Math., Vol. 342. MR 0384917
- 5. Z. Fiedorowicz, H. Hauschild, and J. P. May, Equivariant algebraic 𝐾-theory, Algebraic 𝐾-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 23–80. MR 689388
- 6. H. Hauschild, J. P. May, and S. Waner, Equivariant infinite loop space theory (to appear).
- 7. Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. MR 0375286, https://doi.org/10.1090/memo/0156
- 8. J. P. May, J. McClure, and G. Triantafillou, Equivariant localization, Bull. London Math. Soc. 14 (1982), no. 3, 223–230. MR 656603, https://doi.org/10.1112/blms/14.3.223
- 9. J. McClure, The groups JO (to appear).
- 10. Goro Nishida, The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ. 18 (1978), no. 3, 435–451. MR 509493, https://doi.org/10.1215/kjm/1250522505
- 11. G. Triantafillou, Minimal model for the G-rational homotopy type (preprint).
- 12. Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, https://doi.org/10.1090/S0002-9947-1980-0558178-7
- 13. Stefan Waner, Equivariant fibrations and transfer, Trans. Amer. Math. Soc. 258 (1980), no. 2, 369–384. MR 558179, https://doi.org/10.1090/S0002-9947-1980-0558179-9
- 14. S. Waner, Equivariant RO(G)-graded singular cohomology (preprint).
- 15. Klaus Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373–390. MR 343260, https://doi.org/10.1007/BF01170239
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 55N25, 55P42, 57T15
Retrieve articles in all journals with MSC (1980): 55N25, 55P42, 57T15
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1981-14886-2