Ordinary $RO\left ( G \right )$-graded cohomology
HTML articles powered by AMS MathViewer
- by G. Lewis, J. P. May and J. McClure PDF
- Bull. Amer. Math. Soc. 4 (1981), 208-212
References
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062, DOI 10.1007/BFb0082690
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743, DOI 10.1007/BFb0085965
- Andreas W. M. Dress, Contributions to the theory of induced representations, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 183–240. MR 0384917
- Z. Fiedorowicz, H. Hauschild, and J. P. May, Equivariant algebraic $K$-theory, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 23–80. MR 689388 6. H. Hauschild, J. P. May, and S. Waner, Equivariant infinite loop space theory (to appear).
- Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. MR 375286, DOI 10.1090/memo/0156
- J. P. May, J. McClure, and G. Triantafillou, Equivariant localization, Bull. London Math. Soc. 14 (1982), no. 3, 223–230. MR 656603, DOI 10.1112/blms/14.3.223 9. J. McClure, The groups JO (to appear).
- Goro Nishida, The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ. 18 (1978), no. 3, 435–451. MR 509493, DOI 10.1215/kjm/1250522505 11. G. Triantafillou, Minimal model for the G-rational homotopy type (preprint).
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7 14. S. Waner, Equivariant RO(G)-graded singular cohomology (preprint).
- Klaus Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373–390. MR 343260, DOI 10.1007/BF01170239
Additional Information
- Journal: Bull. Amer. Math. Soc. 4 (1981), 208-212
- MSC (1980): Primary 55N25, 55P42, 57T15
- DOI: https://doi.org/10.1090/S0273-0979-1981-14886-2
- MathSciNet review: 598689