Inversion of Abelian integrals
HTML articles powered by AMS MathViewer
- by George Kempf PDF
- Bull. Amer. Math. Soc. 6 (1982), 25-32
References
-
1. A. Grothendieck, Technique de descente et théorèms en géométrie algébraique. V. Les schémes de Picard: Théorèms d’existence, Séminaire Bourbaki, exposé 232 (1961-1962).
- R. C. Gunning, Some special complex vector bundles over Jacobi varieties, Invent. Math. 22 (1973), 187–210. MR 335858, DOI 10.1007/BF01389673
- Robert C. Gunning, Riemann surfaces and generalized theta functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 91, Springer-Verlag, Berlin-New York, 1976. MR 0457787, DOI 10.1007/978-3-642-66382-6
- George R. Kempf, Some vector bundles on Jacobian varieties, Proc. Amer. Math. Soc. 54 (1976), 179–180. MR 390302, DOI 10.1090/S0002-9939-1976-0390302-6
- George Kempf, A property of the periods of a Prym differential, Proc. Amer. Math. Soc. 54 (1976), 181–184. MR 402124, DOI 10.1090/S0002-9939-1976-0402124-8
- George Kempf, Toward the inversion of abelian integrals. I, Ann. of Math. (2) 110 (1979), no. 2, 243–273. MR 549489, DOI 10.2307/1971261
- George Kempf, Toward the inversion of abelian integrals. I, Ann. of Math. (2) 110 (1979), no. 2, 243–273. MR 549489, DOI 10.2307/1971261
- George R. Kempf, Deformations of symmetric products, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 319–341. MR 624823
- I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319–343. MR 151460, DOI 10.1016/0040-9383(62)90019-8
- Arthur Mattuck, Symmetric products and Jacobians, Amer. J. Math. 83 (1961), 189–206. MR 142553, DOI 10.2307/2372727
- Arthur Mattuck, Secant bundles on symmetric products, Amer. J. Math. 87 (1965), 779–797. MR 199196, DOI 10.2307/2373245
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285, DOI 10.1515/9781400882069
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math. 7 (1963), 257–268. MR 151459, DOI 10.1215/ijm/1255644637
Additional Information
- Journal: Bull. Amer. Math. Soc. 6 (1982), 25-32
- MSC (1980): Primary 14H05, 14H40, 30F10; Secondary 14K20, 32G15, 14F05
- DOI: https://doi.org/10.1090/S0273-0979-1982-14962-X
- MathSciNet review: 634432