## Discrete conformal groups and measurable dynamics

HTML articles powered by AMS MathViewer

- by Dennis Sullivan PDF
- Bull. Amer. Math. Soc.
**6**(1982), 57-73

## References

- Lars V. Ahlfors,
*Finitely generated Kleinian groups*, Amer. J. Math.**86**(1964), 413–429. MR**167618**, DOI 10.2307/2373173 - Lars V. Ahlfors,
*Kleinian groups*, Scripta Math.**27**(1964), 97–103 (1964). MR**171007** - Lars V. Ahlfors,
*Möbius transformations in several dimensions*, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR**725161** - Jon Aaronson,
*On the pointwise ergodic behaviour of transformations preserving infinite measures*, Israel J. Math.**32**(1979), no. 1, 67–82. MR**531602**, DOI 10.1007/BF02761186
[As] Jon Aaronson and Dennis Sullivan, Rational ergodicity of the geodesic flow on infinite volume hyperbolic manifolds (manuscript).
- Lipman Bers,
*Spaces of Kleinian groups*, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 9–34. MR**0271333**
Lipmann Bers, (ii) See also these proceedings.
[B] Rufus Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math.
[C et al] Alain Connes, Jack Feldman and Benjamin Weiss, Amenable equivalence relations are hyperfinite, Inst. Hautes Études Sci. Publ. Math. preprint, 1980.
[G] Lucy Garnett, Functions and measures harmonic along the leaves of a foliation, Ph.D. Thesis, Dartmouth College, 1981; Inst. Hautes Études Sci. Publ. Math. preprint, June 1980.
- Wolfgang Krieger,
*On ergodic flows and the isomorphism of factors*, Math. Ann.**223**(1976), no. 1, 19–70. MR**415341**, DOI 10.1007/BF01360278
[L] William LeVeque, Continued fractions for the Gaussian field, Indag. Math. (1952).
- S. J. Patterson,
*The limit set of a Fuchsian group*, Acta Math.**136**(1976), no. 3-4, 241–273. MR**450547**, DOI 10.1007/BF02392046 - Marina Ratner,
*Rigidity of horocycle flows*, Ann. of Math. (2)**115**(1982), no. 3, 597–614. MR**657240**, DOI 10.2307/2007014 - Dennis Sullivan,
*Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics*, Acta Math.**149**(1982), no. 3-4, 215–237. MR**688349**, DOI 10.1007/BF02392354 - Dennis Sullivan,
*On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions*, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR**624833** - Dennis Sullivan,
*The density at infinity of a discrete group of hyperbolic motions*, Inst. Hautes Études Sci. Publ. Math.**50**(1979), 171–202. MR**556586**, DOI 10.1007/BF02684773 - Dennis Sullivan,
*Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups*, Acta Math.**153**(1984), no. 3-4, 259–277. MR**766265**, DOI 10.1007/BF02392379 - Dennis Sullivan,
*Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension two*, Geometry Symposium, Utrecht 1980 (Utrecht, 1980) Lecture Notes in Math., vol. 894, Springer, Berlin-New York, 1981, pp. 127–144. MR**655423**
Dennis Sullivan, (vi) On the finiteness of cusps, Acta Math. (to appear).
Dennis Sullivan, (vii) The exponential size of a Riemannian manifold relative to heat flow, Acta Math. (submitted).
[Sc] Klaus Schmidt, Cocycles of ergodic group actions, Warwick Notes, 1976.
[T] Bill Thurston, (i) Geometry and topology of three-manifolds, preprint, Princeton Univ., 1978; to be published by Princeton Univ. Press, 1982.
Bill Thurston, (ii) Hyperbolic structures on 3-manifolds, I. Deformation of acylindrical manifolds, Ann. of Math. (to appear).
[Tu] Pekka Tukia, Rigidity of Kleinian groups and dimensionality of the limit set, preprint, Univ. of Helsinki, 1981.

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**6**(1982), 57-73 - MSC (1980): Primary 32H20, 58F11, 58F17; Secondary 58F18, 10F05
- DOI: https://doi.org/10.1090/S0273-0979-1982-14966-7
- MathSciNet review: 634434