Amenability and the spectrum of the Laplacian
HTML articles powered by AMS MathViewer
- by Robert Brooks PDF
- Bull. Amer. Math. Soc. 6 (1982), 87-89
References
- Robert Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), no. 4, 581–598. MR 656213, DOI 10.1007/BF02566228
- Robert Brooks, The spectral geometry of foliations, Amer. J. Math. 106 (1984), no. 4, 1001–1012. MR 749263, DOI 10.2307/2374330
- Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199. MR 0402831
- Erling Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243–254. MR 79220, DOI 10.7146/math.scand.a-10442
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311, DOI 10.4310/jdg/1214501132
- J. F. Plante, A generalization of the Poincaré-Bendixson theorem for foliations of codimension one, Topology 12 (1973), 177–181. MR 341502, DOI 10.1016/0040-9383(73)90005-0
- Caroline Series, Foliations of polynomial growth are hyperfinite, Israel J. Math. 34 (1979), no. 3, 245–258 (1980). MR 570884, DOI 10.1007/BF02760886
Additional Information
- Journal: Bull. Amer. Math. Soc. 6 (1982), 87-89
- MSC (1980): Primary 58G25
- DOI: https://doi.org/10.1090/S0273-0979-1982-14973-4
- MathSciNet review: 634438