Finite linear groups whose ring of invariants is a complete intersection
Authors:
Victor Kac and Kei-ichi Watanabe
Journal:
Bull. Amer. Math. Soc. 6 (1982), 221-223
MSC (1980):
Primary 14D25; Secondary 14L30
DOI:
https://doi.org/10.1090/S0273-0979-1982-14989-8
MathSciNet review:
640951
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
- 2. Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (𝑆𝐺𝐴 2), North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. MR 0476737
- 3. Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, https://doi.org/10.2307/2372597
- 4. M. Goresky, Letter to the first author, June 1981.
- 5. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, https://doi.org/10.4153/cjm-1954-028-3
- 6. Keiichi Watanabe, Invariant subrings which are complete intersections. I. Invariant subrings of finite abelian groups, Nagoya Math. J. 77 (1980), 89–98. MR 556310
- 7. K.-i. Watanabe and D. Rotillon, Invariant subrings of C[X, Y, Z] which are complete intersections (in preparation).
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 14D25, 14L30
Retrieve articles in all journals with MSC (1980): 14D25, 14L30
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1982-14989-8