## Three dimensional manifolds, Kleinian groups and hyperbolic geometry

HTML articles powered by AMS MathViewer

- by William P. Thurston PDF
- Bull. Amer. Math. Soc.
**6**(1982), 357-381

## References

- Lipman Bers,
*Finite-dimensional Teichmüller spaces and generalizations*, Bull. Amer. Math. Soc. (N.S.)**5**(1981), no. 2, 131–172. MR**621883**, DOI 10.1090/S0273-0979-1981-14933-8
[Can, Th] J. Cannon and W. Thurston, Sphere-filling curves and limit sets of Kleinian groups (to appear).
- M. Culler, W. Jaco, and H. Rubinstein,
*Incompressible surfaces in once-punctured torus bundles*, Proc. London Math. Soc. (3)**45**(1982), no. 3, 385–419. MR**675414**, DOI 10.1112/plms/s3-45.3.385
[F, H] W. Floyd and A. Hatcher, Incompressible surfaces in 2-bridge link complements (to appear).
[F, L, P] A. Fathi, F. Laudenbach, V. Poénaru et al., Travaus de Thurston sur les surfaces, Astérisque 66-67, Société Mathématique de France, 1979.
- Wolfgang Haken,
*Theorie der Normalflächen*, Acta Math.**105**(1961), 245–375 (German). MR**141106**, DOI 10.1007/BF02559591
[Hat] A. Hatcher, Incompressible surfaces in once-punctured torus bundles (to appear).
- A. Hatcher and W. Thurston,
*Incompressible surfaces in $2$-bridge knot complements*, Invent. Math.**79**(1985), no. 2, 225–246. MR**778125**, DOI 10.1007/BF01388971 - William H. Jaco and Peter B. Shalen,
*Seifert fibered spaces in $3$-manifolds*, Mem. Amer. Math. Soc.**21**(1979), no. 220, viii+192. MR**539411**, DOI 10.1090/memo/0220 - Klaus Johannson,
*Homotopy equivalences of $3$-manifolds with boundaries*, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR**551744** - William H. Meeks III and Shing Tung Yau,
*Topology of three-dimensional manifolds and the embedding problems in minimal surface theory*, Ann. of Math. (2)**112**(1980), no. 3, 441–484. MR**595203**, DOI 10.2307/1971088
[Mey] R. Meyerhoff, The Chern-Simons invariant for hyperbolic 3-manifolds, thesis, Princeton University, 1981.
- J. Milnor,
*A unique decomposition theorem for $3$-manifolds*, Amer. J. Math.**84**(1962), 1–7. MR**142125**, DOI 10.2307/2372800
[Mil 2] J. Milnor, Hyperbolic geometry: the first 150 years, proceedings.
- G. D. Mostow,
*Strong rigidity of locally symmetric spaces*, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR**0385004**
[Mos 2] G. D. Mostow, Inst. Hautes Études Sci. Publ. Math.
[Poin] H. Poincaré, Cinquième complèment a l’analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110, or Oeuvres, t. VI, pp. 435-498.
- Gopal Prasad,
*Strong rigidity of $\textbf {Q}$-rank $1$ lattices*, Invent. Math.**21**(1973), 255–286. MR**385005**, DOI 10.1007/BF01418789 - Robert Riley,
*Discrete parabolic representations of link groups*, Mathematika**22**(1975), no. 2, 141–150. MR**425946**, DOI 10.1112/S0025579300005982 - H. Seifert,
*Topologie Dreidimensionaler Gefaserter Räume*, Acta Math.**60**(1933), no. 1, 147–238 (German). MR**1555366**, DOI 10.1007/BF02398271
[Smi] Proceedings of the Smith Conjecture Conference at Columbia University, (to appear).
- John Stallings,
*On fibering certain $3$-manifolds*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR**0158375**
[Sul 1] D. Sullivan, Discrete conformal groups and measurable dynamics, these proceedings.
[Sul 2] D. Sullivan,
[Th 1] W. Thurston, The geometry and topology of 3-manifolds, preprint, Princeton Univ. Press (to appear).
- William P. Thurston,
*Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds*, Ann. of Math. (2)**124**(1986), no. 2, 203–246. MR**855294**, DOI 10.2307/1971277
[Th 3] W. Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle.
- William P. Thurston,
*On the geometry and dynamics of diffeomorphisms of surfaces*, Bull. Amer. Math. Soc. (N.S.)**19**(1988), no. 2, 417–431. MR**956596**, DOI 10.1090/S0273-0979-1988-15685-6 - Friedhelm Waldhausen,
*On irreducible $3$-manifolds which are sufficiently large*, Ann. of Math. (2)**87**(1968), 56–88. MR**224099**, DOI 10.2307/1970594

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**6**(1982), 357-381 - MSC (1980): Primary 57M99, 30F40, 57S30; Secondary 57M25, 20H15
- DOI: https://doi.org/10.1090/S0273-0979-1982-15003-0
- MathSciNet review: 648524