Ergodic theory, group representations, and rigidity
HTML articles powered by AMS MathViewer
- by Robert J. Zimmer PDF
- Bull. Amer. Math. Soc. 6 (1982), 383-416
References
-
1. L. Auslander, L. Green and F. Hahn, Flows on homogeneous spaces, Ann. of Math. Studies, no. 53, Princeton Univ. Press, Princeton, N.J., 1963.
- Louis Auslander, An exposition of the structure of solvmanifolds. I. Algebraic theory, Bull. Amer. Math. Soc. 79 (1973), no. 2, 227–261. MR 486307, DOI 10.1090/S0002-9904-1973-13134-9
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Armand Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR 123639, DOI 10.2307/1970150
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111–164 (French). MR 181643, DOI 10.1007/BF02566948
- Jonathan Brezin and Calvin C. Moore, Flows on homogeneous spaces: a new look, Amer. J. Math. 103 (1981), no. 3, 571–613. MR 618325, DOI 10.2307/2374105 8. A. Connes, J. Feldman and B. Weiss, Amenable equivalence relations are generated by a single transformation (preprint). 9. C. Delaroche and A. Kirillov, Sur les relations entre l’espace dual d’un groupe et la structure de ses sous-groupes fermés, Seminarie Bourbaki, no. 343, 1967/68.
- H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, DOI 10.2307/2372852
- H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, DOI 10.2307/2373108
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Jacob Feldman, Peter Hahn, and Calvin C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. in Math. 28 (1978), no. 3, 186–230. MR 492061, DOI 10.1016/0001-8708(78)90114-7
- Hans Freudenthal, Topologische Gruppen mit genügend vielen fastperiodischen Funktionen, Ann. of Math. (2) 37 (1936), no. 1, 57–77 (German). MR 1503269, DOI 10.2307/1968687
- Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. MR 146298, DOI 10.2307/1970220
- H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477–515. MR 157368, DOI 10.2307/2373137
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. MR 0251549
- Yves Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333–379 (French). MR 369608 20. G. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241-260.
- Eberhard Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940), 590–608 (German). MR 2722, DOI 10.1007/BF01450032
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI 10.1016/0022-1236(79)90078-8
- J. W. Jenkins, Growth of connected locally compact groups, J. Functional Analysis 12 (1973), 113–127. MR 0349895, DOI 10.1016/0022-1236(73)90092-x
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Wolfgang Krieger, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), no. 1, 19–70. MR 415341, DOI 10.1007/BF01360278
- George W. Mackey, Ergodic transformation groups with a pure point spectrum, Illinois J. Math. 8 (1964), 593–600. MR 172961 27. G. A. Margulis, Non-uniform lattices in semisimple algebraic groups, in Lie groups and their representations (I. M. Gelfand, ed.), Wiley, New York.
- G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 21–34 (Russian). MR 0492072
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- G. A. Margulis, Factor-groups of discrete subgroups, Dokl. Akad. Nauk SSSR 242 (1978), no. 3, 533–536 (Russian). MR 507138
- G. A. Margulis, Factor groups of discrete subgroups and measure theory, Funktsional. Anal. i Prilozhen. 12 (1978), no. 4, 64–76 (Russian). MR 515630
- Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052
- Calvin C. Moore, Amenable subgroups of semisimple groups and proximal flows, Israel J. Math. 34 (1979), no. 1-2, 121–138 (1980). MR 571400, DOI 10.1007/BF02761829
- Calvin C. Moore and Robert J. Zimmer, Groups admitting ergodic actions with generalized discrete spectrum, Invent. Math. 51 (1979), no. 2, 171–188. MR 528022, DOI 10.1007/BF01390227
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004 37. D. Ornstein and B. Weiss (to appear).
- William Parry, Zero entropy of distal and related transformations, Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967) Benjamin, New York, 1968, pp. 383–389. MR 0234443
- Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- Arlan Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253–322 (1971). MR 281876, DOI 10.1016/0001-8708(71)90018-1
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- Thomas Sherman, A weight theory for unitary representations, Canadian J. Math. 18 (1966), 159–168. MR 193189, DOI 10.4153/CJM-1966-020-0 44. C. Sutherland, Orbit equivalence: Lectures on Krieger’s theorem, Univ. of Oslo Lecture Notes.
- V. S. Varadarajan, Geometry of quantum theory. Vol. II, The University Series in Higher Mathematics, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. MR 0471675
- P. S. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), no. 1, 19–34. MR 384993, DOI 10.1007/BF01350065
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
- Robert J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), no. 4, 555–588. MR 414832
- Robert J. Zimmer, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Ann. of Math. (2) 106 (1977), no. 3, 573–588. MR 466406, DOI 10.2307/1971068
- Robert J. Zimmer, Uniform subgroups and ergodic actions of exponential Lie groups, Pacific J. Math. 78 (1978), no. 1, 267–272. MR 513300
- Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis 27 (1978), no. 3, 350–372. MR 0473096, DOI 10.1016/0022-1236(78)90013-7
- Robert J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 3, 407–428. MR 521638 53. R. J. Zimmer, Algebraic topology of ergodic Lie group action and measurable foliations (preprint).
- Robert J. Zimmer, An algebraic group associated to an ergodic diffeomorphism, Compositio Math. 43 (1981), no. 1, 59–69. MR 631427
- Robert J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. (2) 112 (1980), no. 3, 511–529. MR 595205, DOI 10.2307/1971090
- Robert J. Zimmer, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 237–253. MR 661822, DOI 10.1017/s0143385700009251
- Robert J. Zimmer, On the cohomology of ergodic actions of semisimple Lie groups and discrete subgroups, Amer. J. Math. 103 (1981), no. 5, 937–951. MR 630773, DOI 10.2307/2374253
- Robert J. Zimmer, On the Mostow rigidity theorem and measurable foliations by hyperbolic space, Israel J. Math. 43 (1982), no. 4, 281–290. MR 693350, DOI 10.1007/BF02761234
Additional Information
- Journal: Bull. Amer. Math. Soc. 6 (1982), 383-416
- MSC (1980): Primary 22D10, 22D40, 22E40, 28D15, 53C35, 57R30, 57S20
- DOI: https://doi.org/10.1090/S0273-0979-1982-15005-4
- MathSciNet review: 648527