Étale $K$-theory and arithmetic
HTML articles powered by AMS MathViewer
- by William G. Dwyer and Eric M. Friedlander PDF
- Bull. Amer. Math. Soc. 6 (1982), 453-455
References
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
- William Dwyer, Eric Friedlander, Victor Snaith, and Robert Thomason, Algebraic $K$-theory eventually surjects onto topological $K$-theory, Invent. Math. 66 (1982), no. 3, 481–491. MR 662604, DOI 10.1007/BF01389225
- Eric M. Friedlander, Étale $K$-theory. II. Connections with algebraic $K$-theory, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 231–256. MR 683636
- B. Harris and G. Segal, $K_{i}$ groups of rings of algebraic integers, Ann. of Math. (2) 101 (1975), 20–33. MR 387379, DOI 10.2307/1970984
- Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic $K$-theory, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 489–501. MR 0406981
- C. Soulé, $K$-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999, DOI 10.1007/BF01406843
- Christophe Soulé, On higher $p$-adic regulators, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 372–401. MR 618313, DOI 10.1007/BFb0089530
- R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 826102
- R. W. Thomason, The Lichtenbaum-Quillen conjecture for $K/l_\ast [\beta ^{-1}]$, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 117–139. MR 686114
Additional Information
- Journal: Bull. Amer. Math. Soc. 6 (1982), 453-455
- MSC (1980): Primary 18F25; Secondary 12A60, 55N15
- DOI: https://doi.org/10.1090/S0273-0979-1982-15013-3
- MathSciNet review: 648533