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BOOK REVIEWS 

History of functional analysis, by Jean Dieudonné, Notas de Matemâtica, no. 
77, North-Holland Mathematics Studies, no. 49, North-Holland Publishing 
Company, Amsterdam, 1981, vi + 312 pp., $29.50. 

The infinite] No other question has ever moved so profoundly 
the spirit of man.—David Hilbert (1921) 

In the last decade or two there has been renewed interest among mathemati
cians regarding the history of their subject. Books and papers focusing on the 
history of various topics within comtemporary mathematics are now com
monplace. Many mathematical journals actively solicit and promote high 
quality survey articles which offer historical perspective. After many years of 
explosive development, there is now a growing awareness of the importance of 
interpreting and reflecting on how mathematics arrived at its present state. 
Although most mathematicians know that many problems have their origins in 
classical problems, few of us (it appears safe to say) have had the time, 
inclination, interest, patience (or ability?) to unravel the precise sequence of 
events connecting these problems. The point of view of present-day historians 
of mathematics is that it is worthwhile to know about these ties with classical 
problems and the subsequent evolution stimulated by them. The admirable 
book under review, written by an eminently qualified mathematician, makes a 
notable contribution to the understanding of the historical process that has 
shaped what is known today as functional analysis. 

What is functional analysis? Perhaps it is surprising that this term is 
ordinarily not defined even by those who write on the subject. One reason for 
this appears to stem from the fact that, to date, functional analysis has not 
completely crystallized as a single discipline but rather suggests a grouping of 
subjects which, in certain respects, have more in common regarding method 
then content. It is the essence of functional analysis that concepts and methods 
of classical analysis and related branches of mathematics be extended to more 
general objects. Such generalization makes it possible to approach, from a 
unified point of view, questions which earlier appeared isolated or to have little 
in common. Furthermore, the very general nature of the techniques of func
tional analysis often reveal deep insights and new results that otherwise would 
escape detection. 

Let us return to the opening question of the previous paragraph: What is 
functional analysis? To achieve some degree of focus and simultaneously to 
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allow for sufficient coverage of applications the author adopts the following 
definition: Functional analysis is "the study of topological vector spaces and 
mappings u: £2 -> F from a subset Q of a topological vector space E into a 
topological vector space F, these mappings being assumed to satisfy various 
algebraic and topological conditions". This definition is wide enough in scope 
to include most of the "standard topics" considered to fall within the study of 
functional analysis. In particular, it includes Hubert space and the spectral 
theory of operators (bounded and unbounded), the theory of normed linear 
spaces, the theory of Banach algebras and operator algebras (C*-algebras and 
von Neumann algebras), the general theory of topological vector spaces, 
generalized functions (distributions), and the theory of partial differential 
equations. 

The fundamental concepts and methods of functional analysis arose gradu
ally (in the early years, at least) from the oldest parts of mathematical analysis: 
the calculus of variations, integral equations, the theory of orthogonal func
tions, Chebyshev approximation theory, and the moment problem. Much of 
the modern day terminology in functional analysis originated within these 
classical subjects. For example, the concept of 'functional' had its origin in the 
study of the calculus of variations. On the other hand, the development of set 
theory, general topology, abstract algebra, and the Lebesgue integral paved the 
way for a systematic treatment of the new generalized methods in abstract 
form. Since the most frequently studied mappings between topological vector 
spaces are linear, it is not surprising that linear algebra should have greatly 
influenced functional analysis, and this indeed turned out to be the case 
(however, this influence, especially in the beginning, was not always positive). 

The book under review is divided into nine chapters, the first eight of which 
describe a particular "era" or "chunk" in the history of functional analysis. 
Each of these chapters is structured around ideas or influential papers which 
had a major impact on the development of the subject. The final chapter is 
concerned primarily with applications of functional analysis to the theory of 
differential equations. The author's writing style is informal (in fact, nearly 
conversational) which together with his expertise in the subject makes the 
presentation a delight. His device of combining historical development with a 
clear (but far from linear) description of the material is particularly effective in 
giving the reader an unobstructed view of the difficulties encountered by the 
early writers, as well as their methods of dealing with these difficulties. While 
protecting the reader from obscurities of language and notation of earlier times 
except by way of illustration or making a point, Dieudonné's principal concern 
is the process itself, the actual record of the way functional analysis developed. 
He skillfully traces who first introduced important ideas, concepts, and meth
ods (the reviewer counted no less than twenty-five statements which began 
with the phrase "It was first proved by . . . ") and the corresponding dates. 
Zipping back and forth through time periods ranging from one to nearly 
two-hundred years Dieudonné discusses techniques and arguments of the early 
innovators. He offers praise as well as criticism. The depth and originality of 
the results are weighed as well as their influence on the historical development 
of the subject. All of this is accompanied by commentary whose purpose is to 
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place it in proper historical context. Of course, since mathematicians rarely 
leave behind their inner thoughts concerning how an important theorem came 
to be formulated and eventually proved, it is inevitable that some speculation 
is required in a work such as this one. Speculation also arises with questions of 
priority, i.e., when an important idea or theorem is duplicated (at least in spirit 
if not in fact) several years after it originated or was published by another 
mathematician. Dieudonne does not hesitate to point out overlapping results 
and duplications. However, he usually sidesteps the hard questions of fore
knowledge of the results by the later author. It, in fact, appears that 
Dieudonne generally assumes that all parties are innocent partly on the basis 
that mathematicians of the caliber he is discussing would not resort to 
publishing work which is not due to them, and partly on the basis that most of 
the papers in which there is duplication take a decidedly different direction 
except for the duplication. 

Turning to the contents of the individual chapters one finds a lively 
description of many important subjects whose development is inextricably 
connected with the foundations of functional analysis. Chapter I (13 pp.) 
contains a discussion of the historical relevance of linear differential equations 
and the Sturm-Liouville problem to the birth of modern spectral theory. There 
is a discussion of the contributions of Lagrange (who, we are told, introduced 
the notion of adjoint of a linear differential operator), Euler, D'Alembert, D. 
Bernoulli, J. Fourier, Parseval, Poisson, C. Sturm, J. Liouville, and several 
lesser known figures. Although this chapter is quite short, it contains an 
unusually clear summary of the early work on linear differential equations, 
Fourier analysis, and the Sturm-Liouville problem. 

Chapter II (17 pp.) entitled The crypto-integral equations is divided into five 
sections dealing with successive approximations, partial differential equations, 
the beginnings of potential theory, the Dirichlet principle, and the Beer-
Neumann method. The historical scope of the chapter is fairly broad, covering 
roughly the period 1800 to 1895. Most of the thrust of the chapter centers on 
attempts to solve the Dirichlet problem. The contributions of H. A. Schwarz, 
H. Poincaré, C. Beer, and C. Neumann concerning the problem are discussed 
in detail. While the work of Schwarz and Poincaré described here, based on 
approximation techniques, did not directly influence the development of 
functional analysis, the work of Neumann in conjunction with earlier work of 
Beer was a landmark in functional analysis because it contained the first 
example of what is now called a "Fredholm integral equation of the second 
kind." 

Chapter III (23 pp.) entitled The equation of vibrating membranes is devoted 
to a paper of H. A. Schwarz written in 1885 and work of H. Poincaré during 
the period 1887-1895. In his study of minimal surfaces, Schwarz is led to 
consider the partial differential equation 

where p is a strictly positive continuous function defined on a domain D of the 
xy-plane. So ingenious are the techniques of Schwarz that Dieudonne is led to 
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state "Schwarz's paper is extremely remarkable by the originality of its 
methods, which do not seem to have been inspired by any previous work." To 
demonstrate the power of Schwarz's methods Dieudonné proceeds to show 
that Schwarz's arguments can be translated, almost without change, to the 
modern theory of self adjoint compact operators in a separable Hubert space. 
Incidently, this 1885 paper contains a double integral version of the famous 
inequality which is named after Schwarz (the inequality had been considered 
earlier by Cauchy (1821) and Buniakovskii (1859) in different settings, but 
Schwarz did not mention this). The remainder of Chapter III is devoted to 
three long papers of H. Poincaré. Once again we have the opportunity to 
observe a truly creative mind at work. Concerning Poincaré's attack on the 
problems at hand Dieudonné states "it is quite remarkable to see Poincaré 
introducing a whole batch of completely new ideas." 

The concept of infinite dimension is taken up in Chapter IV (25 pp.). The 
evolution of linear algebra is summarized to form a backdrop for the ideas 
which led to functional analysis. Because mathematicians were unwilling to let 
go of familiar techniques used for solving systems of linear equations, 
Dieudonné points out that the historical development of linear algebra ended 
up in exactly the reverse order of what we now consider to be the logical order. 
Infinite determinants are discussed as well as first notions of "function spaces" 
and operators between them. The passage from "finiteness to infinity" emerged 
in the first general theory of integral equations with the work of Le Roux in 
1894 and Volterra in 1896. 

Chapter V (24 pp.) is titled The crucial years and the definition of Hubert 
space. Between 1900 and 1910, there was a sudden crystallization of all the 
ideas and methods which had been slowly accumulating during the nineteenth 
century. This was essentially due to the publication of four fundamental 
papers: (1) a paper of Fredholm on integral equations published in 1900; (2) 
Lebesgue's 1902 thesis on integration; (3) a paper of Hubert on spectral theory 
published in 1906; and (4) Fréchet's 1906 thesis on metric spaces. The central 
focus of the chapter is on the work of Fredholm and Hubert although 
important contributions by E. Schmidt in 1908 are also discussed. 

Duality and the definition of normed spaces is the topic of Chapter VI (22 
pp.). The remarkable Riesz-Fréchet theorem and the development of the 
L ̂ -spaces led to many important concepts in functional analysis. The work of 
F. Riesz in 1910 is considered by Dieudonné to be second in importance only 
to Hilbert's 1906 paper on spectral theory. One of the highlights of this chapter 
is the description of work by the Austrian mathematician E. Helly in two 
papers, one in 1912 and the other in 1921 (the nine year interval between them 
is due to World War I, in which Helly was a prisoner of war in Russia). Helly's 
results were penetrating and deep; furthermore, they applied to general "normed 
sequence spaces" and for the first time did not depend on special features of 
the space, contrasting with the techniques of E. Schmidt and F. Riesz. Among 
other things, Helly's work contained the essential computational steps necessary 
in the proof of the Hahn-Banach extension theorem, a fact which had not been 
widely recognized by the mathematical community until quite recently. 
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The independent work of H. Hahn and S. Banach on axiomatic normed 
linear spaces is described in some detail leading up to the publication of 
Banach's landmark book in 1932. With the publication of this book analysts 
the world over began to realize the power of the new methods and to apply 
them to a great variety of problems. 

Chapter VII (65 pp.) is titled Spectral theory after 1900. This is the longest 
chapter in the book and contains sections on F. Riesz's theory of compact 
operators, the spectral theory of Hubert, the work of Weyl and Carleman, the 
spectral theory of von Neumann, the theory of Banach algebras, operator 
algebras, function algebras, harmonic analysis, representations of locally com
pact groups, and other topics. The discussion of these results is very modern 
with definitions provided and statements of the most important theorems. The 
basic viewpoint of the chapter is that the above topics can be absorbed under 
the general heading of "spectral theory." 

Locally convex topological spaces and the theory of distributions is the topic 
of Chapter VIII (22 pp.). In his thesis Fréchet had already noticed that 
convergence in a metric space did not always correspond to certain types of 
"convergence" for functions. Thus there was a need to generalize the concept 
of metric space but none proved adequate for functional analysis until Haus-
dorff, in 1914, introduced the concept of neighborhood providing a basis for 
what is now known as general topology. Even so, it took mathematicians many 
years to formulate the general notion of topological vector space and they were 
not the subject of a systematic treatment until 1950. Dieudonné describes the 
various stages of development, emphasizing the role of boundedness, for the 
theory of locally convex spaces. Apart from briefly mentioning the important 
work of A. Grothendieck on the tensor product of two locally convex spaces, 
he refrains from discussing the vast number of papers on the subject after 
1950. A very interesting description of the origin of generalized functions 
(distributions) and the subsequent efforts of L. Schwartz to weld all the 
previous ideas into a unified and cohesive theory is given in the second half of 
Chapter VIII. Dieudonné likens Schwartz's role in distribution theory to that 
of Newton and Leibniz in the development of calculus. 

Finally, as mentioned earlier, Chapter IX (46 pp.) is concerned with appli
cations of functional analysis to differential and partial differential equations. 
The chapter is divided into five sections dealing with fixed point theorems, 
Carleman operators, boundary problems, Sobolev spaces and a priori inequali
ties, and pseudo-differential operators. An effort has been made to supply the 
reader with enough background to make the reading of the sections interesting 
and intelligible. In addition, references have been given to enable the reader to 
pursue the applications further if he desires. Several books, at varying levels of 
sophistication, whose purpose is to apply the techniques of functional analysis 
have recently appeared (see [1, 5, 6,11]). 

The author has justifiably chosen to stay within certain conventional 
boundaries in writing this history. There are, for example, no excursions into 
the historical origins of nonlinear functional analysis [3], partially ordered 
topological vector spaces [7, 9], non-Archimedean functional analysis [10], 
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general topological algebras [2], or Banach modules and categorical considera
tions in functional analysis [4]. The reasons for this are quite obvious since 
most of these topics are quite recent or have developed along Unes distinct 
from the ideas of the present volume. 

It should be mentioned that the book under review is not the first attempt to 
trace the history of functional analysis. Indeed, in 1973 A. F. Monna [8] 
published a book with many of the same objectives, and raised several 
questions (see [8, p. 55 and p. 133]) concerning the contributions of the Italian 
school of mathematicians to the foundations of functional analysis. His 
primary concern appears to be that their pioneering work before 1900 concern
ing the definition of normed linear spaces has not been properly acknowl
edged. This book by Monna is not listed among the references in Dieudonné's 
bibliography and no reference is made to it in the text. The reviewer would 
have appreciated seeing Dieudonné's response to some of Monna's questions. 

Another reference missing from Dieudonné's bibliography is Alaoglu's 1938 
Bulletin announcement [Bull. Amer. Math. Soc. 44 (1938), 196, 459] concerning 
the weak*-compactness of the closed unit ball in the dual of a normed space, 
and related results. This reference clearly establishes priority of Alaoglu over 
Bourbaki concerning these results, contrary to the account given on page 212. 
The absence of Alaoglu's announcement from the bibliography puzzles the 
reviewer. Indeed, Dieudonné referred to it in a 1949 review of his own 
(Mathematical Reviews 10 (1949), 611), where he acknowledges Alaoglu's 
priority concerning the above! 

Putting aside such things, Dieudonné has given us a very readable and 
exciting account of how functional analysis has evolved. He has tried to 
communicate his message in several ways. For example, at the end of the 
introduction (p. 8) a complicated diagram has been constructed that depicts 
graphically (in some detail) the successive stages of this history and its 
interaction with other parts of mathematics. There are 235 entries in the 
bibliography (many of them collected works), an author index, and a subject 
index. A small number of misprints (< 20) have been detected but none of 
them should cause problems for the reader. 

After the dust has settled, one is impressed that the remarkable feature of 
this history is that, after a slow beginning, spectral theory, in the span of a few 
years, reached complete maturity, giving rise in the process to the important 
concept of linear duality. A lot of information is packed into 312 pages! This is 
essential reading for functional analysts who wish to know how their subject 
came into existence. 
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Operator inequalities, by Johann Schroder, Mathematics in Science and En
gineering, vol. 147, Academic Press, New York, 1980, xvi + 367 pp., $39.50. 

There exists an extensive literature on the theory of differential inequalities 
relative to initial value problems in finite and infinite dimensional spaces, 
including random differential inequalities [2, 3, 5, 6-8, 9]. This theory is also 
known as the theory of comparison principle. The corresponding theory of 
differential inequalities related to boundary value problems of ordinary and 
partial differential equations has also developed substantially [1, 4, 5, 9]. The 
treatment of this general theory of differential inequalities is not for its own 
sake. The essential unity is achieved by the wealth of its applications to various 
qualitative and quantitative problems of a variety of dynamical systems. This 
theory can be applied employing as a candidate a suitable norm or more 
generally a Lyapunov-like function, to provide an effective mechanism for 
investigating various problems. It is therefore natural to expect the develop
ment of an abstract theory so as to bring out the unifying theme of various 
theories of inequalities. The present book is an attempt in this direction. 

As the title suggests, this book is concerned with inequalities that are 
described by operators which may be matrices, differential operators, or 
integral operators. As an example the inverse-positive linear operators M, may 
be described by the property that Mu ^ 0 implies u > 0. These are operators 
M which have a positive inverse M~l. For an inverse-positive operator M one 
can derive estimates of M"V from properties of r without knowing the inverse 
M"1 explicitly. This property can be used to derive a priori estimates for 
solutions of equations Mu = r. There are important applications as well. For 
example, if M is inverse-positive, an equation Mu = Nu with a nonlinear 
operator N may be transformed into a fixed-point equation u = M~lNu, to 
which then a monotone iteration method or other methods may be applied, if 
N has suitable properties. Moreover, for inverse-positive M the eigenvalue 


