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The origins of Cauchy 's rigorous calculus, by Judith V. Grabiner, MIT Press, 
Cambridge, 1981, viii + 252 pp., $30.00. 

Equations différentielles ordinaires: Ordinary differential equations, by Augustin 
Louis Cauchy, Études Vivantes, Paris, and Johnson Reprint Corporation, 
New York, 1981, lviii + 146 pp., $24.50. 

Calculus in 1800 was in a curious state. There was no doubt that it was 
correct. Mathematicians of sufficient skill and insight had been successful with 
it for a century. Yet no one could explain clearly why it worked. To be sure, 
experts would probably have agreed that some notion of "limit" lay behind 
derivatives, and of course integrals were defined as antiderivatives and thus 
raised no separate questions. But the discussions of the foundational issues had 
been desultory and inconclusive. Students by and large were not instructed in 
calculus, they were initiated into it. If they were gifted with the right insight, 
practice would then give them an intuitive feeling for the right results. The 
motto of the period, attributed (perhaps wrongly) to D'Alembert, was Allez en 
avant, et la foi vous viendra: Go forward, and faith will come to you. 

Still, there was a nagging feeling that something should be done. There were 
occasional disagreements, like that over the vibrating string, that were hard to 
bring to a clear resolution. Besides, mathematicians still remembered the 
tradition of proof that was their proud inheritance from the Greeks. To 
establish something "in the style of geometry" was a byword for establishing it 
beyond doubt. Particularly galling was the fact that Archimedes had estab
lished some "calculus" results in exactly that style. It seemed in fact that every 
single area value or tangent slope computed by calculus could be similarly 
justified. But no one wanted to do such justifications, because they were long, 
tedious, and (worst of all) apparently unrelated to the intuition behind the 
calculus. Lagrange had been concerned with justifying calculus for over twenty 
years, but his major efforts had rested on the formal use of power series and 
were not satisfactory. 

Then came Cauchy. It is hardly enough to say merely that he solved the 
problems; he showed that there weren't any problems. Seldom has there been 
such good reason to say, with Boileau, 

Ce que Ton conçoit bien s'énonce clairement, 
Et les mots pour le dire arrivent aisément. 

For Cauchy was not at all the type of scholar who ponders and polishes his 
work for years. Throughout his career he wrote almost two papers a month. 
His last submission to the Académie des Sciences, less than three weeks before 
he died, ends with the words, "I shall explain this at greater length in a memoir 
to follow." Called upon to lecture on calculus, he merely presented the 
prescribed topics as best he could. But his best was so illuminating that the 
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ideas stood out with quite unaccustomed clarity. He did not really establish 
new foundations; he swept away all the dust to reveal the whole edifice of 
calculus already standing on bedrock. 

This is the accomplishment treated in the new book by Grabiner. Its 
outlines, of course, have long been familiar; we hardly hold our breath in 
suspense wondering how it will all come out. But her book nonetheless 
introduces a valuable new approach. Starting from something basic, like 
Cauchy's definition of the derivative, one can trace its historical antecedents in 
two ways. First, one can ask what previous attempts had been made to define 
derivatives. This has been done by many authors. But Grabiner also asks where 
else Cauchy might have seen ideas like those he used in his definitions. The 
first question leads, by and large, only to various minor works by authors like 
James Jurin, Benjamin Robins, Simon L'Huilier, and Lazare Carnot. The 
second, as she shows, leads us rather to people like Euler, D'Alembert, 
Ampère, and Poisson. Slightly oversimplifying her conclusions, we may say 
that, alongside the formal machinery of calculus, certain approximation tech
niques had been developed in various special situations. Occasionally (though 
not often) these were accompanied by error estimates. Cauchy's great insight 
was that he could view these as fundamental. Using them as definitions (and 
developing them into proofs), he could reach all the formal results while using 
nothing more " transcendental" than inequalities. This is just what Archimedes 
had done in his special cases; drawing on a century's accumulated experience 
in manipulating inequalities, Cauchy could carry out the arguments once and 
for all. 

A secondary theme in Grabiner's book is the importance of Lagrange. 
Grabiner stresses three aspects of this. First, in the later 1700's Lagrange had 
been by far the most important mathematician seriously concerned with the 
foundations of calculus, and she can document how much his work increased 
other people's awareness of the problems. Second, he more than his predeces
sors was concerned with formulating general approximation techniques and 
giving error estimates for them. Finally, in a number of places Lagrange got at 
least part way toward the right understanding. For instance, consider the 
condition that f(x + h) = f(x) + f\x)h + hR with R -* 0 as h -* 0. Lagrange 
did not define the derivative in this way; but he stated the property early in his 
treatment and based several later arguments on it. Also, by emphasizing that 
differentiation applied to functions (and thus could be iterated), he eliminated 
all the special problems raised by "higher-order infinitesimals". The next time 
you run through higher derivatives in less than one meeting of the freshman 
calculus course, pause to murmur a short blessing on the name of Lagrange. 

As one reads the book, one point that stands out is that Cauchy's definitions 
actually play a different role from those of his predecessors. In the eighteenth 
century, people gave definitions of limits; many of them, echoing a phrase of 
Newton's, said that the limit was a value to which the variable came arbitrarily 
close, without ever exceeding it. In practice, of course, analysts were perfectly 
familiar with cases where the variable oscillated around its limit. But the 
"definition" was meant only as a sort of guide to the intuition, like "A point is 
position without extension" at the start of Euclid. Once the calculus formalism 
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had been grasped intuitively, the definitions were never again mentioned, so 
the later exceptions never mattered. Cauchy's definitions, on the other hand, 
are not intuitive suggestions; they are precise formulations of what he means. 
Consequently, they can be used explicitly whenever necessary. And it is just 
this explicit use of inequalities that separates analysis today from the calculus 
of the eighteenth century. At the risk of sounding paradoxical, one might say 
that clarifying the concepts of calculus was in itself the smaller part of 
Cauchy's accomplishment in clarifying the concepts of calculus. In laying bare 
their roots, he also cleared the ground for all the flourishing growth of modern 
analysis. 

Another point that stands out is the importance of advanced studies in 
clarifying the basics. The influence of approximation studies has already been 
mentioned. For another example, consider integration. For most people in the 
eighteenth century, integrals were defined as antiderivatives; Cauchy made 
definite integrals basic. Why? One reason, of course, was that existence proofs 
could then be given even when no antiderivative was apparent. But when all 
functions in sight had had power series expansions, antiderivatives always were 
apparent. The existence question really became important only when people 
wanted to claim that they could expand "arbitrary" periodic functions in 
Fourier series. A second reason was that Cauchy and others were beginning to 
explore functions of a complex variable, and a naive use of them in integration 
gave some quite puzzling results. It became possible to attach a value (indeed, 
many values) to log(-l); but no possible choice could make log(l) — log(-l) 
real, and what then did it have to do with ƒ_*, dx/xl Yet a third reason, I 
suspect—one that Grabiner overlooks—is that around this time Cauchy was 
doing quite a lot of work on differential equations. Here again he emphasized 
the initial value problem, where most previous authors had dealt with formal 
solutions containing indeterminate constants. In this case he could get precise 
theorems that were not apparent when people had to be concerned with 
"special solutions" that might or might not be particular cases of the "general 
solutions". Even more is this true in partial differential equations, where we 
still say "Cauchy problem" when we mean the initial value problem. It is 
worth remembering that Cauchy had already discovered the method of char
acteristics before he gave the lectures in the Cours d 'analyse. 

This last thought was suggested by the second book under review, the heart 
of which is a photoreproduction of Cauchy's 1823-1824 lecture notes on 
ordinary differential equations. (Despite the bilingual title, by the way, all but 
one page of the book is in French.) In structure, in notation, sometimes even in 
wording the central existence proof is completely parallel to that for definite 
integrals in the earlier lectures. Again Cauchy takes an approximation method, 
one mentioned incidentally once or twice by his predecessors, and turns it into 
a major proof. (There is also the same oversight as for definite integrals: 
continuity on closed bounded intervals is tacitly assumed to be uniform.) As a 
whole the lectures are clear and pleasant to read, better perhaps than some 
books on the market today. Cauchy even gives a preliminary treatment of 
y' = F(x9 y) with the extra assumption that F is bounded on an infinite strip 
a < x < b\ only then does he go on to the more complicated estimates where F 
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is merely continuous. It is interesting to see that this useful pedagogical device 
goes back to the founder of the theory. 

The notes reproduced here are all set in print; it seems very likely that some 
of them are Cauchy's own proof sheets. But they break off as Cauchy begins to 
extend the existence theorem to systems, and they were never published. 
Cauchy's existence proof was made known in a book by Moigno in 1840, but 
these notes remained totally unknown until they were discovered a few years 
ago by Christian Gilain. His fifty-page introduction discusses how he found 
them, what they contain, and why Cauchy never published them. This discus
sion is interesting in several ways. First of all, Gilain knew what to look for 
because he had located the official course outlines for the calculus sequence at 
the École Polytechnique in the 1820s. These also revealed that the three sets of 
notes published by Cauchy, the Cours d'analyse (1821), the Résumé des 
leçons.. .sur le calcul infinitésimal (1823), and the Leçons sur les applications du 
calcul infinitésimal à la géométrie (1826), were not (as previously thought) 
separate incomplete treatments but rather a single sequence, following exactly 
the topics prescribed for the first year course. 

These notes all came into existence because in 1820 the École Polytechnique 
prescribed that if a lecturer covered material not in the standard texts, he 
should write up notes on it for the students, who would be taking exams on it 
the next September. The surviving printer's dates on the differential equations 
notes show that with them Cauchy fell behind. This may not have been totally 
his fault, for the notes were printed by the same office that did all the rest of 
the government printing, and about this time they fell behind in several sets of 
notes because of work stemming from some financial laws. At any rate, the 
printing was probably dropped once it was too late to help the students in their 
exams. 

Gilain also has a reasonable explanation why Cauchy did not publish more 
on this method in his later career. In the 1830s, he discovered the "majorant" 
arguments to establish convergence of power series solutions, and he probably 
thought that these were a more satisfactory approach. For one thing, they gave 
the solutions in much more traditional form. Still better, they applied to 
functions of a complex variable. Indeed, in their original form they were tied in 
with the "Cauchy estimates" for ƒ(w)(0) in terms of the values of f(z) on a 
circle, and so they applied only to functions extended to a complex variable. It 
is good to be reminded how much the study of ordinary differential equations 
focused on complex functions in the middle of the nineteenth century. In fact, 
Cauchy's original, real existence theorem remained almost unnoticed until it 
was rediscovered (with some improvements) by Lipschitz fifty years later 
(1876). Even then, Jordan, in the first edition of his famous Cours d'analyse, 
could devote an entire volume to differential equations (1886) without men
tioning this theorem. Only the work of Poincaré brought the focus back to 
real-variable problems. 

One further question remains. Cauchy gave the same differential equations 
course again two years later; why weren't notes for the complete course printed 
then? Guam's answer to this forces some revision of common ideas about the 
position of mathematics in France at the time. Felix Klein, for instance, in his 
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fascinating old history of mathematics in the nineteenth century, had cited 
Cauchy's lectures as evidence of the "unusually high requirements on the 
purely mathematical side that were set as a basis" for the practical instruction 
in the École Polytechnique. But this turns out not to be true. In fact, there were 
complaints about Cauchy's teaching—and my, but they do sound familiar! 
Five lectures on the generalities of integration? "That might be all right in the 
Faculty of Sciences," said a physicist, "but it is not appropriate in the École 
Polytechnique, where the students are pressed for time." By 1825, when 
Cauchy repeated the course on differential equations, the Ministry of Educa
tion had been persuaded to decree officially that lecturers should stick to the 
syllabus officially established. Officially, Cauchy agreed: the minutes for 
November, 1825 say "M. Cauchy announces that, to conform to the wishes of 
the Council, he will no longer strive, as he has up to now, to give perfectly 
rigorous proofs." But in fact he did not change. The minutes a year later record 
that "M. Cauchy has presented only lecture notes that could not satisfy the 
commission, and thus far it has been impossible to make him.. .carry out the 
decision of the Minister." In other words, his notes that year were not 
considered fit to print. 

Cauchy was always a man of prickly principles. Loyal to the old Bourbon 
regime, he abandoned his positions rather than swear an oath of allegiance to 
Louis Philippe after the 1830 revolution. (In 1838 he resumed activity in the 
Académie, which was exempt, but still refused all positions requiring the oath.) 
He had even less liking for the republican government set up in 1848, but he 
immediately resumed his position at the Sorbonne—because an oath was no 
longer required. Personal details like this are usually mere diversions in the 
history of mathematics, but in this particular case they seem to be important. 
As several authors (including Grabiner) have pointed out, Cauchy was not the 
only mathematician to lecture on calculus at the École Polytechnique. Ampère, 
Poisson, and others did so at about the same time. But Cauchy was stubborn. 
He would no more choose to give a false proof than to swear a false oath; he 
would deliver his lectures his way. And it seems that his stubbornness as well as 
his genius helped to give us the Cours d 'analyse. 

WILLIAM C. WATERHOUSE 
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Numerical methods for stiff equations and singular perturbation problems, by 
Willard L. Miranker, Mathematics and its Applications, vol. 5, D. Reidel 
Publishing Company, Dordrecht, Holland; Boston, U.S.A.; London, Eng
land, 1981, xiii + 202 pp., $29.95. 

Numerical analysis and perturbation theory are two principal approaches to 
the problems of applied mathematics. It is a little surprising that there has not 
been more interaction between these approaches. In my opinion this is because 
the goals and the problem classes are rather different. At the risk of gross 
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