Self-dual connections and the topology of smooth 4-manifolds
HTML articles powered by AMS MathViewer
- by S. K. Donaldson PDF
- Bull. Amer. Math. Soc. 8 (1983), 81-83
References
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- M. Kuranishi, New proof for the existence of locally complete families of complex structures, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 142–154. MR 0176496
- John Milnor, On simply connected $4$-manifolds, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128. MR 0103472
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 0344216, DOI 10.1007/978-1-4684-9884-4
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250 6. C. H. Taubes, The existence of self-dual connections on non self-dual 4-manifolds, J. Differential Geom. (to appear). 7. K. K. Uhlenbeck, Connections vnth L, Comm. Math. Phys. 3 (1981).
- Karen K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys. 83 (1982), no. 1, 11–29. MR 648355, DOI 10.1007/BF01947068
Additional Information
- Journal: Bull. Amer. Math. Soc. 8 (1983), 81-83
- MSC (1980): Primary 57N13; Secondary 58G99
- DOI: https://doi.org/10.1090/S0273-0979-1983-15090-5
- MathSciNet review: 682827