Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567432
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Loo Keng Hua and Yuan Wang
Title: Applications of number theory to numerical analysis
Additional book information: Springer-Verlag, Berlin, Science Press, Beijing, 1981, 241 pp., $39.00.

References [Enhancements On Off] (What's this?)

  • A. Baker, On some Diophantine inequalities involving the exponential function, Canadian J. Math. 17 (1965), 616–626. MR 177946, DOI 10.4153/CJM-1965-061-8
  • Heinrich P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der mathematischen Physik, J. Reine Angew. Math. 268(269) (1974), 410–417 (German). MR 344210
  • 3.
    H. Conroy, Molecular Schrödinger equation. VII: A new method for the evaluation of multidimensional integrals, J. Chem. Phys. 47 (1967), 5307-5318.
    4.
    U. Dieter, Autokorrelation multiplikativ-erzeugter Pseudo-Zufallszahlen, Operations Research Verfahren 6 (1969), 69-85.
  • U. Dieter and J. Ahrens, An exact determination of serial correlations of pseudorandom numbers, Numer. Math. 17 (1971), 101–123. MR 286245, DOI 10.1007/BF01406000
  • Seymour Haber, Experiments on optimal coefficients, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 11–37. MR 0391479
  • J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84–90. MR 121961, DOI 10.1007/BF01386213
  • Edmund Hlawka, Uniform distribution modulo $1$ and numerical analysis, Compositio Math. 16 (1964), 92–105 (1964). MR 175278
  • 9.
    D. H. Knuth, The art of computer programming (esp. Vol. 2), Addison-Wesley, Reading, Mass., 1969.
  • Zdeněk Kopal, Numerical analysis. With emphasis on the application of numerical techniques to problems of infinitesimal calculus in single variable, John Wiley & Sons, Inc., New York, 1955. MR 0077213
  • N. M. Korobov, Approximate calculation of repeated integrals by number-theoretical methods, Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 1062–1065 (Russian). MR 0098714
  • N. M. Korobov, Approximate evaluation of repeated integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207–1210 (Russian). MR 0104086
  • 13.
    N. M. Korobov, Number-theoretic methods of approximate analysis, Fitmatgiz, Moscow, 1963.
  • L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
  • D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, pp. 141–146. MR 0044899
  • Kaj L. Nielsen, Methods in numerical analysis, The Macmillan Company, New York, 1956. MR 0076428
  • Wolfgang M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970), 189–201. MR 268129, DOI 10.1007/BF02392334
  • Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
  • S. C. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. (4) 73 (1966), 293–317. MR 218018, DOI 10.1007/BF02415091
  • 20.
    S. K. Zaremba, La discrépance isotope et l'intégration numérique, Ann. Mat. Pura Appl. 87 (1970), 125-136.
  • S. K. Zaremba, La méthode des “bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39–119 (French, with English summary). MR 0343530
  • S. C. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968), 85–96. MR 235731, DOI 10.4064/ap-21-1-85-96
  • S. K. Zaremba (ed.), Applications of number theory to numerical analysis, Academic Press, New York-London, 1972. MR 0334452

  • Review Information:

    Reviewer: Emil Grosswald
    Journal: Bull. Amer. Math. Soc. 8 (1983), 489-496
    DOI: https://doi.org/10.1090/S0273-0979-1983-15132-7