Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567444
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: S. C. Power
Title: Hankel operators on Hilbert space
Additional book information: Research Notes in Mathematics, No. 64, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982, 87 pp., $13.95. ISBN 0-273-08518-2.

References [Enhancements On Off] (What's this?)

  • V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 1–19 (Russian). MR 0234274
  • V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem, Mat. Sb. (N.S.) 86(128) (1971), 34–75 (Russian). MR 0298453
  • Sheldon Axler, I. David Berg, Nicholas Jewell, and Allen Shields, Approximation by compact operators and the space $H^{\infty }+C$, Ann. of Math. (2) 109 (1979), no. 3, 601–612. MR 534765, DOI 10.2307/1971228
  • Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), no. 3, 285–309. MR 511973, DOI 10.1007/BF01682841
  • 5.
    C. Carathéodory and L. Fejér, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz, Rend. Circ. Math. Palermo 32 (1911), 218-239.
  • Douglas N. Clark, On the spectra of bounded, Hermitian, Hankel matrices, Amer. J. Math. 90 (1968), 627–656. MR 231112, DOI 10.2307/2373546
  • Douglas N. Clark, On interpolating sequences and the theory of Hankel and Toeplitz matrices, J. Functional Analysis 5 (1970), 247–258. MR 0254628, DOI 10.1016/0022-1236(70)90029-7
  • L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211–217. MR 236720, DOI 10.1090/S0002-9947-1969-0236720-9
  • R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369
  • I. C. Gohberg and N. Ja. Krupnik, The algebra generated by the Toeplitz matrices, Funkcional. Anal. i Priložen. 3 (1969), no. 2, 46–56 (Russian). MR 0250082
  • Philip Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862–866. MR 108684, DOI 10.1090/S0002-9939-1958-0108684-8
  • Philip Hartman and Aurel Wintner, On the spectra of Toeplitz’s matrices, Amer. J. Math. 72 (1950), 359–366. MR 36936, DOI 10.2307/2372039
  • James S. Howland, Trace class Hankel operators, Quart. J. Math. Oxford Ser. (2) 22 (1971), 147–159. MR 288630, DOI 10.1093/qmath/22.1.147
  • M. G. Kreĭn, Integral equations on the half-line with a kernel depending on the difference of the arguments, Uspehi Mat. Nauk 13 (1958), no. 5 (83), 3–120 (Russian). MR 0102721
  • Wilhelm Magnus, On the spectrum of Hilbert’s matrix, Amer. J. Math. 72 (1950), 699–704. MR 41358, DOI 10.2307/2372284
  • Zeev Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162. MR 82945, DOI 10.2307/1969670
  • V. V. Peller, Hankel operators of class ${\mathfrak {S}}_{p}$ and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. (N.S.) 113(155) (1980), no. 4(12), 538–581, 637 (Russian). MR 602274
  • Stephen Power, The essential spectrum of a Hankel operator with piecewise continuous symbol, Michigan Math. J. 25 (1978), no. 1, 117–121. MR 487567
  • S. C. Power, $C^{\ast }$-algebras generated by Hankel operators and Toeplitz operators, J. Functional Analysis 31 (1979), no. 1, 52–68. MR 523113, DOI 10.1016/0022-1236(79)90097-1
  • S. C. Power, Hankel operators with PQC symbols and singular integral operators, Proc. London Math. Soc. (3) 41 (1980), no. 1, 45–65. MR 579716, DOI 10.1112/plms/s3-41.1.45
  • C. R. Putnam, Commutators and absolutely continuous operators, Trans. Amer. Math. Soc. 87 (1958), 513–525. MR 100226, DOI 10.1090/S0002-9947-1958-0100226-0
  • Marvin Rosenblum, On the Hilbert matrix. I, Proc. Amer. Math. Soc. 9 (1958), 137–140. MR 94626, DOI 10.1090/S0002-9939-1958-0094626-0
  • Marvin Rosenblum, The absolute continuity of Toeplitz’s matrices, Pacific J. Math. 10 (1960), 987–996. MR 114125
  • 24.
    T. Takagi, On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau, Japanese J. Math. 1 (1924), 83-93.
  • A. L. Vol′berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), no. 2, 209–218. MR 658609

  • Review Information:

    Reviewer: Douglas N. Clark
    Journal: Bull. Amer. Math. Soc. 9 (1983), 98-102
    DOI: https://doi.org/10.1090/S0273-0979-1983-15171-6