Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


The dynamical systems approach to differential equations
HTML articles powered by AMS MathViewer

by Morris W. Hirsch PDF
Bull. Amer. Math. Soc. 11 (1984), 1-64
    R. Abraham, 1971 Predictions for the future of differential equations, Lecture Notes in Math., vol. 206 (D. Chillingworth, ed.), Springer-Verlag. R. Abraham and J. Marsden, 1967 Foundation of mechanics, Benjamin, New York.
  • Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
  • Ralph H. Abraham and Christopher D. Shaw, Dynamics—the geometry of behavior. Part 1, Visual Mathematics Library: Vismath, vol. 1, Aerial Press, Inc., Santa Cruz, Calif., 1982. Periodic behavior. MR 669376
  • Herbert Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620–709. MR 415432, DOI 10.1137/1018114
  • A. A. Andronov and L. Pontryagin, 1937 Systèmes grossiers, Dokl. Akad. Nauk. SSSR 14, 247-251.
  • D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR 145 (1962), 707–709 (Russian). MR 0143156
  • D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
  • V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi. MR 695786, DOI 10.1007/978-1-4684-0147-9
  • Gunnar Aronsson and Ingvar Mellander, A deterministic model in biomathematics. Asymptotic behavior and threshold conditions, Math. Biosci. 49 (1980), no. 3-4, 207–222. MR 573187, DOI 10.1016/0025-5564(80)90079-6
  • D. Berlinski, 1976 On systems analysis, MIT Press, Cambridge, Mass. G. D. Birkhoff, 1920 Recent advances in dynamics, Science (N.S.) 51, 51-55 and Collected mathematical papers, vol. 2, Amer. Math. Soc., Providence, R. I., pp. 106-110.
  • George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
  • George D. Birkhoff, On the periodic motions of dynamical systems, Acta Math. 50 (1927), no. 1, 359–379. MR 1555257, DOI 10.1007/BF02421325
  • G. D. Birkhoff, 1932 Sur l’existence de régions d’instabilité en dynamique, Ann. Inst. H. Poincaré 2, 369-386 and Collected mathematical papers, vol. 2, op. cit., pp. 444-461.
  • George D. Birkhoff, Sur le problème restreint des trois corps (premier mémoire), Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 4 (1935), no. 3, 267–306 (French). MR 1556760
  • George D. Birkhoff, Some unsolved problems of theoretical dynamics, Science 94 (1941), 598–600. MR 6260, DOI 10.1126/science.94.2452.598
  • G. D. Birkhoff, 1935a Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyn. 1, 85-216 and Collected mathematical papers, vol. 2, op. cit., pp. 530-661.
  • George D. Birkhoff, The mathematical nature of physical theories, Amer. Sci. 31 (1943), 281–310. MR 9000
  • G. D. Birkhoff, 1950 Collected mathematical papers, vols. 1, 2, 3, Amer. Math. Soc., Providence, R. I. G. D. Birkhoff and B. O. Koopman, 1932 Recent contributions to ergodic theory, Proc. Nat. Acad. Sci. U.S.A. 18, 279-282 and Collected mathematical papers, op. cit., vol. 3, pp. 462-465. L. E. J. Brouwer, 1907 On the foundation of mathematics, Collected Mathematical Works, Vol. 1, American Elsevier, New York. L. E. J. Brouwer, 1913 Intuitionism and formalism, Bull. Amer. Math. Soc. 20, 81-96; Collected works, Vol. 1, op. cit., pp. 123-138.
  • L. E. J. Brouwer, Collected works. Vol. 1, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Philosophy and foundations of mathematics; Edited by A. Heyting. MR 0532661
  • John L. Casti, Recent developments and future perspectives in nonlinear system theory, SIAM Rev. 24 (1982), no. 3, 301–331. MR 667511, DOI 10.1137/1024065
  • T. M. Cherry, 1938 Analytic quasi-periodic curves of discontinuous type on a torus, Proc. London Math. Soc. (2) 44, 175-215.
  • T. M. Cherry, Asymptotic solutions of analytic Hamiltonian systems, J. Differential Equations 4 (1968), 142–159. MR 223678, DOI 10.1016/0022-0396(68)90032-6
  • W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
  • J. Coste, J. Peyraud, and P. Coullet, Asymptotic behaviors in the dynamics of competing species, SIAM J. Appl. Math. 36 (1979), no. 3, 516–543. MR 531612, DOI 10.1137/0136039
  • D´Alembert and Diderot (Editors), 1754 Encyclopédie, Vol. 4, Briasson, David, LeBreton, Durand, Paris. Darwin, 1892 Life of Charles Darwin (F. Darwin, ed.), John Murray, London. Darwin, 1936 The origin of species and The descent of man, Modern Library, New York.
  • Arnaud Denjoy, Sur les courbes définies par les équations différentielles, Advancement in Math. 4 (1958), 161–187 (Chinese). MR 101369
  • Stillman Drake, Galileo at work, University of Chicago Press, Chicago, Ill.-London, 1978. His scientific biography. MR 531510
  • A. S. Eddington, 1927 The nature of the physical world, Cambridge Univ. Press, Cambridge, England. A. Einstein, 1930 On the occasion of the three hundredth anniversary of Kepler’s death, Frankfurter Zeitung, November 9, 1930 and Ideas and opinions, Crown, New York, 1954. A. Einstein, 1931 On the one hundreth anniversary of Maxwell’s birth, James Clerk Maxwell: A Commemorative Volume, Cambridge Univ. Press, Cambridge, England, and Ideas and opinions, op. cit.
  • John M. Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics, vol. 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C. by the American Mathematical Society, Providence, R.I., 1982. MR 669378, DOI 10.1090/cbms/049
  • Herbert I. Freedman, Deterministic mathematical models in population ecology, Monographs and Textbooks in Pure and Applied Mathematics, vol. 57, Marcel Dekker, Inc., New York, 1980. MR 586941
  • H. I. Freedman and Paul Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci. 68 (1984), no. 2, 213–231. MR 738903, DOI 10.1016/0025-5564(84)90032-4
  • N. Georgescu-Roegen, 1966 Analytical economics: Issues and problems, Harvard Univ. Press, Cambridge, Mass.
  • Charles Coulston Gillispie, The edge of objectivity, Princeton University Press, Princeton, NJ, 1990. An essay in the history of scientific ideas; Reprint of the 1960 original. MR 1145737
  • Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R.I., 1955. MR 0074810, DOI 10.1090/coll/036
  • Stephen Grossberg, Competition, decision, and consensus, J. Math. Anal. Appl. 66 (1978), no. 2, 470–493. MR 515909, DOI 10.1016/0022-247X(78)90249-4
  • J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Applied Mathematical Sciences, Vol. 19, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale. MR 0494309, DOI 10.1007/978-1-4612-6374-6
  • J. Guckenheimer, 1982 Noise in chaotic systems, Nature 298, 358-361.
  • John Guckenheimer and George Buzyna, Dimensional measurements for geostrophic turbulence, Phys. Rev. Lett. 51 (1983), no. 16, 1438–1441. MR 718790, DOI 10.1103/PhysRevLett.51.1438
  • John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
  • J. Hadamard, 1912 L’oeuvres mathématique de Henri Poincaré, Acta Math. 38, 203-287; and Oeuvres de Jacques Hadamard4, CNRS, Paris, pp. 1921-2005. J. Hadamard, 1912a Henri Poincaré et le problème de trois corps, Rev. Mois 16, 385-418 and Oeuvres de Jacques Hadamard, op. cit., pp. 2007-2041. J. Hadamard, 1968 Oeuvres de Jacques Hadamard4, CNRS, Paris.
  • Jack K. Hale, Oscillations in nonlinear systems, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963. MR 0150402
  • Thomas L. Hankins, Sir William Rowan Hamilton, Johns Hopkins University Press, Baltimore, Md., 1980. MR 618834
  • Brian D. Hassard, Nicholas D. Kazarinoff, and Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cambridge-New York, 1981. MR 603442
  • R. Heilbroner, 1953 The worldly philosphers, Simon and Schuster, New York.
  • Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
  • H. W. Hethcote, 1973 Asymptotic behavior in a deterministic epidemic model, J. Math. Biol. 35, 607-614. H. Hethcote, A. Nold and L. Yorke, 1982 Gonorrhea modelling: a comparison of control methods, Math. Biosci. 58, 93-109.
  • Morris W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Nonlinear partial differential equations (Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1983, pp. 267–285. MR 706104
  • M. W. Hirsch, 1983a Systems of differential equations which are competitive or cooperative. II: Convergence almost everywhere, SIAM J. Math. Anal. (in press); preprint, Center for Pure and Appl. Math., Univ. of California, Berkeley.
  • Morris W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal. 13 (1982), no. 2, 167–179. MR 647119, DOI 10.1137/0513013
  • S. B. Hsu, S. P. Hubbell, and Paul Waltman, Competing predators, SIAM J. Appl. Math. 35 (1978), no. 4, 617–625. MR 512172, DOI 10.1137/0135051
  • E. Kamke, Zur Theorie der Systeme gewöhnlicher Differentialgleichungen. II, Acta Math. 58 (1932), no. 1, 57–85 (German). MR 1555344, DOI 10.1007/BF02547774
  • F. Klein, 1911 Lectures on mathematics (Proc. Colloq., Evanston, 1893), Amer. Math. Soc., Providence, R. I. A. Kolmogorov, 1936 Sulla teoria di Volterra della lotta per l´esistenzia, Giorn. Ist. Ital. Attuari 7, 47-80.
  • Ivan Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457–484 (French). MR 165536
  • Ana Lajmanovich and James A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28 (1976), no. 3-4, 221–236. MR 403726, DOI 10.1016/0025-5564(76)90125-5
  • Robert M. May and Warren J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), no. 2, 243–253. MR 392035, DOI 10.1137/0129022
  • S. Lie, 1895 Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung, Leipziger Berichte 47, 53-128 and Sophus Lie Gesammelte Abhandlungen (F. Engel, ed.), Bd. 4, Teubner, Leipzig, 1929, pp. 320-386. E. N. Lorenz, 1963 Deterministic non-periodic flow, J. Atmospheric Sci. 20, 130-141. A. Lotka, 1956 Principles of mathematical biology, Dover, New York.
  • J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Applied Mathematical Sciences, Vol. 19, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale. MR 0494309, DOI 10.1007/978-1-4612-6374-6
  • Xavier Mora, Semilinear parabolic problems define semiflows on $C^{k}$ spaces, Trans. Amer. Math. Soc. 278 (1983), no. 1, 21–55. MR 697059, DOI 10.1090/S0002-9947-1983-0697059-8
  • Robert Edouard Moritz, On mathematics and mathematicians. (Formerly titled: Memorabilia mathematica or the philomath’s quotation-book.), Dover Publications, Inc., New York, 1958. MR 0104557
  • Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
  • Sheldon E. Newhouse, Nondensity of axiom $\textrm {A}(\textrm {a})$ on $S^{2}$, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 191–202. MR 0277005
  • Sheldon E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151. MR 556584, DOI 10.1007/BF02684771
  • Sheldon E. Newhouse, Lectures on dynamical systems, Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978) Progr. Math., vol. 8, Birkhäuser, Boston, Mass., 1980, pp. 1–114. MR 589590
  • H. G. Othmer, The qualitative dynamics of a class of biochemical control circuits, J. Math. Biol. 3 (1976), no. 1, 53–78. MR 406568, DOI 10.1007/BF00307858
  • Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541, DOI 10.1007/978-1-4612-5703-5
  • J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603
  • S. Peirce, 1955 The philosophical writings of C. S. Peirce, Dover, New York.
  • M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101–120. MR 142859, DOI 10.1016/0040-9383(65)90018-2
  • M. M. Peixoto, On the classification of flows on $2$-manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 389–419. MR 0334289
  • H. Poincaré, 1881 Mémoire sur les courbes définies par une équation différentielle, J. Math. Pures Appl. 7, 375-422 and Oeuvres, Vol. 1, Gauthier-Villars, Paris. H. Poincaré, 1880-1890 Sur les courbes définies par les équations différentielles. I-VI, Oeuvres, Vol. 1, op. cit. H. Poincaré, 1890a Sur les équations de la dynamique et le problème de trois corps, Acta. Math. 13, 1-270. H. Poincaré, 1892, 1893, 1899 Les méthodes nouvelles de la mécanique céleste, Vols. I, II, III, Gauthier-Villars, Paris. H. Poincaré, 1908 Atti IV Congr. Internaz. Mat. (Roma, 1908), Vol. I, Acad. dei Lincei, Rome, 1909. H. Poincaré, 1914 La valeur de la science, Flammarion, Paris. H. Poincaré, 1916-1956 Oeuvres de Henri Poincaré, Vols. 1-11, Gauthier-Villars, Paris.
  • Analyse des travaux scientifiques, Acta Math. 38 (1921), no. 1, 3–135 (French). Henri poincaré faite par lui-même. MR 1555105, DOI 10.1007/BF02392063
  • G. Pólya And S. Szegö, 1971 Problems and theorems in analysis, Springer-Verlag.
  • Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
  • A. Rescigno and I. Richardson, 1967 The struggle for life. I: Two species, Bull. Math. Biophys. 29, 377-388. J. Robinson, 1956 The accumulation of capital, Macmillan, London.
  • David Ruelle and Floris Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167–192. MR 284067, DOI 10.1007/BF01646553
  • M. Ruse, 1979 The Darwinian revolution, Univ. of Chicago Press, Chicago, Ill. B. Russell, 1948 Human knowledge, its scope and limits, Simon and Schuster, New York. B. Russell, 1955 Basic writings, 1903-1959 (R. Egner and L. Denner, eds.), Simon and Schuster, New York.
  • James F. Selgrade, Mathematical analysis of a cellular control process with positive feedback, SIAM J. Appl. Math. 36 (1979), no. 2, 219–229. MR 524498, DOI 10.1137/0136019
  • James F. Selgrade, Asymptotic behavior of solutions to single loop positive feedback systems, J. Differential Equations 38 (1980), no. 1, 80–103. MR 592869, DOI 10.1016/0022-0396(80)90026-1
  • L. Silk, 1976 The economists, Basic Books, New York.
  • Stephen Smale, On gradient dynamical systems, Ann. of Math. (2) 74 (1961), 199–206. MR 133139, DOI 10.2307/1970311
  • S. Smale, Dynamical systems and the topological conjugacy problem for diffeomorphisms, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 49–496. MR 0176487
  • S. Smale, A structurally stable differentiable homeomorphism with an infinite number of periodic points, Qualitative methods in the theory of non-linear vibrations (Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961) Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1963, pp. 365–366. MR 0160220
  • Stephen Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63–80. MR 0182020
  • S. Smale, Structurally stable systems are not dense, Amer. J. Math. 88 (1966), 491–496. MR 196725, DOI 10.2307/2373203
  • S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
  • S. Smale, 1967a Dynamical systems on n-dimensional manifolds, Sympos. Differential Equations and Dynamical Systems (Puerto Rico), Academic Press, New York.
  • Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330, DOI 10.1007/978-1-4613-8101-3
  • S. Smale, On the differential equations of species in competition, J. Math. Biol. 3 (1976), no. 1, 5–7. MR 406579, DOI 10.1007/BF00307854
  • Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330, DOI 10.1007/978-1-4613-8101-3
  • M. Spivak, 1970 A comprehensive introduction to differential geometry, Vol. 1, Publish or Perish, Waltham, Mass. S. Sternberg, 1969 Celestial mechanics, Part 1, Benjamin, Reading, Mass. J. Strachey, 1956 Contemporary capitalism, Random House, New York. J. Sylvester, 1877 Appendix to Address on Commemoration Day at Johns Hopkins University, in Collected mathematical papers of James Joseph Sylvester, Vol. 3, Cambridge Univ. Press, Cambridge, England, 1908, pp. 85-87.
  • G. Temple, Linearization and delinearization, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 233–247. MR 0117376
  • René Thom, Stabilité structurelle et morphogénèse, Mathematical Physics Monograph Series, W. A. Benjamin, Inc., Reading, Mass., 1972 (French). Essai d’une théorie générale des modèles. MR 0488155
  • Wolfgang Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. Translated from the German by Lisa Rosenblatt and Lawrence Shampine. MR 0271508, DOI 10.1007/978-3-642-86405-6
  • John Andrew Walker, Dynamical systems and evolution equations, Mathematical Concepts and Methods in Science and Engineering, vol. 20, Plenum Press, New York-London, 1980. Theory and applications. MR 561511, DOI 10.1007/978-1-4684-1036-5
  • Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
  • John Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59–72. MR 556582, DOI 10.1007/BF02684769
  • R. F. Williams, 1983 Review of “Dynamical Systems on Surfaces” by C. Godbillon, Amer. Math. Monthly (in press). A. Winfree, 1979 The geometric theory of biological time, Springer-Verlag. J. Z. Young, 1951 Doubt and certainty in science, Oxford Univ. Press, New York.
Similar Articles
Additional Information
  • Journal: Bull. Amer. Math. Soc. 11 (1984), 1-64
  • MSC (1980): Primary 00A25, 00A99, 01A45, 01A55, 01A60, 34A40, 34C35, 34D10, 34D30, 35B05, 35B35, 35B40, 35B50, 35B30, 35K55, 54H20, 58F25, 58F40, 58F12, 58F10, 58D25, 58D07, 46A40, 46E10, 47H07, 47H20, 92A15, 92A17; Secondary 06F30, 35B65, 58F13, 35J60, 46E05, 92-03, 90-03, 90A16
  • DOI:
  • MathSciNet review: 741723