Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 1567508
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: John Dauns
Title: A concrete approach to division rings
Additional book information: Research and Education in Mathematics, Vol. 2, Heldermann, Verlag, Berlin, 1982, xx + 417 pp., $78.00. ISBN 3-8853-8202-4.

Author: P. X. Draxl
Title: Skew fields
Additional book information: London Mathematical Society Lecture Note Series 81, Cambridge University Press, New York, 1982, 182 pp., $19.95. ISBN 0-5212-7274-2.

References [Enhancements On Off] (What's this?)

  • S. A. Amitsur, L. H. Rowen, and J.-P. Tignol, Division algebras of degree $4$ and $8$ with involution, Israel J. Math. 33 (1979), no. 2, 133–148. MR 571249, DOI 10.1007/BF02760554
  • S. A. Amitsur and D. Saltman, Generic Abelian crossed products and $p$-algebras, J. Algebra 51 (1978), no. 1, 76–87. MR 491789, DOI 10.1016/0021-8693(78)90136-9
  • M. Artin, Brauer-Severi varieties, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, Springer, Berlin-New York, 1982, pp. 194–210. MR 657430
  • B. Fein and M. Schacher, Brauer groups of rational function fields over global fields, The Brauer group (Sem., Les Plans-sur-Bex, 1980) Lecture Notes in Math., vol. 844, Springer, Berlin, 1981, pp. 46–74. MR 611865
  • Edward Formanek, The center of the ring of $4\times 4$ generic matrices, J. Algebra 62 (1980), no. 2, 304–319. MR 563230, DOI 10.1016/0021-8693(80)90184-2
  • Nathan Jacobson, $\textrm {PI}$-algebras, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin-New York, 1975. An introduction. MR 0369421
  • [MS] A. S. Merkuriev and A. A. Suslin, K cohomology of Severi Brauer varieties and norm residue homeomorphism, preprint, 1981.

  • A. S. Merkurjev, Brauer groups of fields, Comm. Algebra 11 (1983), no. 22, 2611–2624. MR 733345, DOI 10.1080/00927878308822983
  • [M2] A. S. Merkuriev, The Brauer group of fields, preprint, 1982.

  • John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
  • Claudio Procesi, Rings with polynomial identities, Pure and Applied Mathematics, vol. 17, Marcel Dekker, Inc., New York, 1973. MR 0366968
  • Lawrence J. Risman, Cyclic algebras, complete fields, and crossed products, Israel J. Math. 28 (1977), no. 1-2, 113–128. MR 457412, DOI 10.1007/BF02759787
  • Louis Halle Rowen, Cyclic division algebras, Israel J. Math. 41 (1982), no. 3, 213–234. MR 657857, DOI 10.1007/BF02771722
  • Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
  • Louis H. Rowen and David J. Saltman, Dihedral algebras are cyclic, Proc. Amer. Math. Soc. 84 (1982), no. 2, 162–164. MR 637160, DOI 10.1090/S0002-9939-1982-0637160-2
  • David J. Saltman, Noncrossed product $p$-algebras and Galois $p$-extensions, J. Algebra 52 (1978), no. 2, 302–314. MR 480640, DOI 10.1016/0021-8693(78)90240-5
  • David J. Saltman, Noncrossed products of small exponent, Proc. Amer. Math. Soc. 68 (1978), no. 2, 165–168. MR 476794, DOI 10.1090/S0002-9939-1978-0476794-4
  • David J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math. 47 (1984), no. 2-3, 165–215. MR 738167, DOI 10.1007/BF02760515
  • Winfried Scharlau, Zur Existenz von Involutionen auf einfachen Algebren, Math. Z. 145 (1975), no. 1, 29–32 (German). MR 393115, DOI 10.1007/BF01214495

  • Review Information:

    Reviewer: David J. Saltman
    Journal: Bull. Amer. Math. Soc. 11 (1984), 214-221