BMO estimates and radial growth of Bloch functions
Author:
B. Korenblum
Journal:
Bull. Amer. Math. Soc. 12 (1985), 99-102
MSC (1980):
Primary 30C55, 42A99
DOI:
https://doi.org/10.1090/S0273-0979-1985-15302-9
MathSciNet review:
766963
Full-text PDF Free Access
References | Similar Articles | Additional Information
- J. G. Clunie and T. H. MacGregor, Radial growth of the derivative of univalent functions, Comment. Math. Helv. 59 (1984), no. 3, 362–375. MR 761804, DOI https://doi.org/10.1007/BF02566357
- T. M. Flett, Some remarks on schlicht functions and harmonic functions of uniformly bounded variation, Quart. J. Math. Oxford Ser. (2) 6 (1955), 59–72. MR 68634, DOI https://doi.org/10.1093/qmath/6.1.59
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI https://doi.org/10.1002/cpa.3160140317
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451
- Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. MR 0507768 6. A. Zygmund, Trigonometric series, Cambridge, 1959.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 30C55, 42A99
Retrieve articles in all journals with MSC (1980): 30C55, 42A99