Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A polynomial invariant for knots via von Neumann algebras
HTML articles powered by AMS MathViewer

by Vaughan F. R. Jones PDF
Bull. Amer. Math. Soc. 12 (1985), 103-111
References
    1. J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. 9 (1923), 93-95.
  • Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982. MR 690578
  • 3. D. Bennequin, Entrelacements et structures de contact, These, Paris, 1982.
  • Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
  • 5. W. Burau, Uber Zopfgruppen und gleichsinning verdrillte Verkettunger, Abh. Math. Sem. Hanischen Univ. 11 (1936), 171-178.
  • J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
  • H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London-New York, 1974. MR 0370328
  • F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254. MR 248801, DOI 10.1093/qmath/20.1.235
  • V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
  • 10. V. F. R. Jones, Braid groups, Hecke algebras and type II1 factors, Japan-U.S. Conf. Proc. 1983.
  • Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. MR 712133
  • Shin’ichi Kinoshita and Hidetaka Terasaka, On unions of knots, Osaka Math. J. 9 (1957), 131–153. MR 98386
  • 13. J. Lannes, Sur l’invariant de Kervaire pour les noeuds classiques, École Polytechnique, Palaiseau, 1984 (preprint).
  • J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554. MR 200922, DOI 10.2307/1970459
  • 15. A. A. Markov, Uber die freie Aquivalenz geschlossener Zopfe, Mat. Sb. 1 (1935), 73-78.
  • Kunio Murasugi, On closed $3$-braids, Memoirs of the American Mathematical Society, No. 151, American Mathematical Society, Providence, R.I., 1974. MR 0356023
  • Kenneth A. Perko Jr., On the classification of knots, Proc. Amer. Math. Soc. 45 (1974), 262–266. MR 353294, DOI 10.1090/S0002-9939-1974-0353294-X
  • Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811, DOI 10.24033/asens.1504
  • Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138–171. MR 218905, DOI 10.2307/1970364
  • Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
  • Lee Rudolph, Nontrivial positive braids have positive signature, Topology 21 (1982), no. 3, 325–327. MR 649763, DOI 10.1016/0040-9383(82)90014-3
  • 22. S. Svensson, Handbook of Seaman’s ropework, Dodd, Mead, New York, 1971.
  • H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
  • Hans Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5–9. MR 873400
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 57M25, 46L10
  • Retrieve articles in all journals with MSC (1980): 57M25, 46L10
Additional Information
  • Journal: Bull. Amer. Math. Soc. 12 (1985), 103-111
  • MSC (1980): Primary 57M25; Secondary 46L10
  • DOI: https://doi.org/10.1090/S0273-0979-1985-15304-2
  • MathSciNet review: 766964