Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567535
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Shmuel Agmon
Title: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators
Additional book information: Mathematical Notes, Vol. 29, Princeton University Press, Princeton, New Jersey, 1982, 118 pp., $10.50. ISBN 0-6910-8318-5.

References [Enhancements On Off] (What's this?)

1.
S. Agmon, On exponential decay of solutions of second order elliptic equations in unbounded domains, Proc. A. Pleijel Conf., Uppsala, September 1979, 1-18.
2.
S. Agmon, How do eigenfunctions decay? The case of N-body quantum systems (Proc. Sixth Internat. Conf. Math. Phys., Berlin, 1981), Lecture Notes in Physics, Springer-Verlag, 1982.
  • Shmuel Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger operators, Schrödinger operators (Como, 1984) Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 1–38. MR 824986, DOI 10.1007/BFb0080331
  • 4.
    R. Alrichs, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, "Schrödinger inequalities" and asymptotic behaviour of many electron densities, Phys. Rev. 16A (1977), 1782-1785.
    5.
    R. Alrichs, Bounds for the long range behaviour of electronic wave functions, J. Chem. Phys. 68 (1978), 1402-1410.
  • René Carmona, Pointwise bounds for Schrödinger eigenstates, Comm. Math. Phys. 62 (1978), no. 2, 97–106. MR 505706
  • R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), no. 1, 59–98. MR 623152
  • J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270. MR 391792
  • P. Deift, W. Hunziker, B. Simon, and E. Vock, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. IV, Comm. Math. Phys. 64 (1978/79), no. 1, 1–34. MR 516993
  • 10.
    T. Hoffmann-Ostenhof, A lower bound to the decay of ground states of two electron atoms, Phys. Lett. 77A (1980), 140-142.
  • P. D. Lax, A Phragmén-Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations, Comm. Pure Appl. Math. 10 (1957), 361–389. MR 93706, DOI 10.1002/cpa.3160100305
  • 12.
    J. Morgan, III, The exponential decay of sub-continuum wave functions of two-electron atoms, J. Phys. A 10 (1977), L91-L93.
  • A. J. O’Connor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319–340. MR 336119
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
  • Barry Simon, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. I, II, Proc. Amer. Math. Soc. 42 (1974), 395–401: ibid. 45 (1974), 454–456. MR 417596, DOI 10.1090/S0002-9939-1974-0417596-0
  • Barry Simon, Instantons, double wells and large deviations, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 323–326. MR 684899, DOI 10.1090/S0273-0979-1983-15104-2
  • Barry Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. (2) 120 (1984), no. 1, 89–118. MR 750717, DOI 10.2307/2007072
  • B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations 9 (1984), no. 4, 337–408. MR 740094, DOI 10.1080/03605308408820335

  • Review Information:

    Reviewer: Percy Deift
    Journal: Bull. Amer. Math. Soc. 12 (1985), 165-169
    DOI: https://doi.org/10.1090/S0273-0979-1985-15332-7