Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Equivariant $h$-cobordisms and finiteness obstructions
HTML articles powered by AMS MathViewer

by Mark Steinberger and James West PDF
Bull. Amer. Math. Soc. 12 (1985), 217-220
References
  • Douglas R. Anderson, Torsion invariants and actions of finite groups, Michigan Math. J. 29 (1982), no. 1, 27–42. MR 646369
  • W. Browder and W. C. Hsiang, Some problems on homotopy theory manifolds and transformation groups, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 251–267. MR 520546
  • William Browder and Frank Quinn, A surgery theory for $G$-manifolds and stratified sets, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 27–36. MR 0375348
  • T. A. Chapman, Controlled simple homotopy theory and applications, Lecture Notes in Mathematics, vol. 1009, Springer-Verlag, Berlin, 1983. MR 711363, DOI 10.1007/BFb0066066
  • [DR] K. H. Doverman and M. Rothenberg, An equivariant surgery sequence and equivariant diffeomorphism and homeomorphism classification (preprint).
  • Sören Illman, Whitehead torsion and group actions, Ann. Acad. Sci. Fenn. Ser. A I Math. 588 (1974), 45. MR 0377906
  • [II2] S. Illman, Personal communication.
  • Frank Quinn, Ends of maps. II, Invent. Math. 68 (1982), no. 3, 353–424. MR 669423, DOI 10.1007/BF01389410
  • Frank Quinn, Geometric algebra, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 182–198. MR 802791, DOI 10.1007/BFb0074444
  • Andrew Ranicki, Algebraic and geometric splittings of the $K$- and $L$-groups of polynomial extensions, Transformation groups, Poznań 1985, Lecture Notes in Math., vol. 1217, Springer, Berlin, 1986, pp. 321–363. MR 874187, DOI 10.1007/BFb0072832
  • Mel Rothenberg, Torsion invariants and finite transformation groups, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 267–311. MR 520507
  • L. C. Siebenmann, Infinite simple homotopy types, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 479–495. MR 0287542, DOI 10.1016/S1385-7258(70)80052-X
  • R. Schultz (ed.), Problems submitted to the AMS summer research conference on group actions, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 513–568. MR 780979, DOI 10.1090/conm/036/780979
  • [W] D. Webb, Equivariantly finite manifolds with no handle structure (in preparation).
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 57S17, 57Q10
  • Retrieve articles in all journals with MSC (1980): 57S17, 57Q10
Additional Information
  • Journal: Bull. Amer. Math. Soc. 12 (1985), 217-220
  • MSC (1980): Primary 57S17, 57Q10
  • DOI: https://doi.org/10.1090/S0273-0979-1985-15351-0
  • MathSciNet review: 776472