## Algebraic $K$-theory of poly-(finite or cyclic) groups

HTML articles powered by AMS MathViewer

- by Frank Quinn PDF
- Bull. Amer. Math. Soc.
**12**(1985), 221-226

## References

- Hyman Bass and M. Pavaman Murthy,
*Grothendieck groups and Picard groups of abelian group rings*, Ann. of Math. (2)**86**(1967), 16–73. MR**219592**, DOI 10.2307/1970360 - David W. Carter,
*Lower $K$-theory of finite groups*, Comm. Algebra**8**(1980), no. 20, 1927–1937. MR**590500**, DOI 10.1080/00927878008822554 - Warren Dicks,
*Groups, trees and projective modules*, Lecture Notes in Mathematics, vol. 790, Springer, Berlin, 1980. MR**584790**, DOI 10.1007/BFb0088140 - Daniel R. Farkas,
*Crystallographic groups and their mathematics*, Rocky Mountain J. Math.**11**(1981), no. 4, 511–551. MR**639438**, DOI 10.1216/RMJ-1981-11-4-511 - F. T. Farrell and W. C. Hsiang,
*The Whitehead group of poly-(finite or cyclic) groups*, J. London Math. Soc. (2)**24**(1981), no. 2, 308–324. MR**631942**, DOI 10.1112/jlms/s2-24.2.308 - F. T. Farrell and W. C. Hsiang,
*On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 325–337. MR**520509**
7. F. T. Farrell and W. C. Hsiang, Topological characterization of flat and almost flat Riemannian manifolds M (to appear).
- Jean-Louis Loday,
*$K$-théorie algébrique et représentations de groupes*, Ann. Sci. École Norm. Sup. (4)**9**(1976), no. 3, 309–377 (French). MR**447373**, DOI 10.24033/asens.1312 - Andrew J. Nicas,
*On the higher Whitehead groups of a Bieberbach group*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 853–859. MR**768746**, DOI 10.1090/S0002-9947-1985-0768746-X - Andrew J. Nicas,
*On $\textrm {Wh}_{3}$ of a Bieberbach group*, Math. Proc. Cambridge Philos. Soc.**95**(1984), no. 1, 55–60. MR**727080**, DOI 10.1017/S0305004100061302 - Andrew J. Nicas,
*On the higher Whitehead groups of a Bieberbach group*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 853–859. MR**768746**, DOI 10.1090/S0002-9947-1985-0768746-X - Frank Quinn,
*Ends of maps. II*, Invent. Math.**68**(1982), no. 3, 353–424. MR**669423**, DOI 10.1007/BF01389410 - Frank Quinn,
*Geometric algebra*, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 182–198. MR**802791**, DOI 10.1007/BFb0074444
14. F. Quinn, Controlled algebra and topology, Lecture Notes (in preparation).
15. I. A. Volodin, Algebraic K-theory as extraordinary homology theory on the category of associative rings with unity, Math. USSR Izv. 5 (1971), 859-887.
- Friedhelm Waldhausen,
*Algebraic $K$-theory of generalized free products. I, II*, Ann. of Math. (2)**108**(1978), no. 1, 135–204. MR**498807**, DOI 10.2307/1971165 - C. A. Weibel,
*Mayer-Vietoris sequences and module structures on $NK_\ast$*, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 466–493. MR**618317**, DOI 10.1007/BFb0089534
18. M. Yamasaki, Surgery groups of crystallographic groups, Dissertation, Virginia Tech., 1982.

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**12**(1985), 221-226 - MSC (1980): Primary 16A54, 18F25, 22E40
- DOI: https://doi.org/10.1090/S0273-0979-1985-15353-4
- MathSciNet review: 776473