Nonlinear stability of shock waves for viscous conservation laws
HTML articles powered by AMS MathViewer
- by Tai-ping Liu PDF
- Bull. Amer. Math. Soc. 12 (1985), 233-236
References
- Jonathan Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal. 95 (1986), no. 4, 325–344. MR 853782, DOI 10.1007/BF00276840
- Eberhard Hopf, The partial differential equation $u_t+uu_x=\mu u_{xx}$, Comm. Pure Appl. Math. 3 (1950), 201–230. MR 47234, DOI 10.1002/cpa.3160030302
- A. M. Il′in and O. A. Oleĭnik, Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of the time, Mat. Sb. (N.S.) 51 (93) (1960), 191–216 (Russian). MR 0120469 4. S. Kawashima and A. Matzumura, Asymptotic stability of traveling wave solutions of system for one-dimensional gas motion.
- P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 93653, DOI 10.1002/cpa.3160100406
- Tai-Ping Liu, Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (1977), no. 6, 767–796. MR 499781, DOI 10.1002/cpa.3160300605 7. A. Matzumura and K. Nishihara, On a stability of traveling wave solutions of a one-dimensional model system of compressible viscous gas (preprint).
Additional Information
- Journal: Bull. Amer. Math. Soc. 12 (1985), 233-236
- MSC (1980): Primary 35K55, 76N10; Secondary 35B40, 35L65
- DOI: https://doi.org/10.1090/S0273-0979-1985-15356-X
- MathSciNet review: 776475