A new polynomial invariant of knots and links
HTML articles powered by AMS MathViewer
- by P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett and A. Ocneanu PDF
- Bull. Amer. Math. Soc. 12 (1985), 239-246
References
-
1. E. Artin, Theorie der Zopfe, Hamburg Abh 9, pp. 47-72.
- J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275–306. MR 1501429, DOI 10.1090/S0002-9947-1928-1501429-1
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Joan S. Birman, On the Jones polynomial of closed $3$-braids, Invent. Math. 81 (1985), no. 2, 287–294. MR 799267, DOI 10.1007/BF01389053 5. N. Bourbaki, Groupes et algèbres de Lie, Chaps. 4, 5, 6, no. 1337, Hermann, Paris, 1960-1972.
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- Cole A. Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270 (1982), no. 1, 75–109. MR 642331, DOI 10.1090/S0002-9947-1982-0642331-X
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127 9. V. F. R. Jones, Braid groups, Hecke algebras and type II1 factors, Proc. Japan-U.S. Conf., 1983 (to appear).
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- W. B. Raymond Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981), no. 1, 321–332. MR 621991, DOI 10.1090/S0002-9947-1981-0621991-2 12. A. A. Markov, Über die freie Aequivalenz geschlossener Zopfe, Mat. Sb. 1 (1935), 73-78. 13. A. Wasserman, Thesis, Univ. of Pennsylvania, 1981.
Additional Information
- Journal: Bull. Amer. Math. Soc. 12 (1985), 239-246
- MSC (1980): Primary 57M25
- DOI: https://doi.org/10.1090/S0273-0979-1985-15361-3
- MathSciNet review: 776477