Homotopy groups of the complements to singular hypersurfaces
Author:
A. Libgober
Journal:
Bull. Amer. Math. Soc. 13 (1985), 49-51
MSC (1980):
Primary 14F20, 57M05, 14H20, 57M10, 14J17, 57M15
DOI:
https://doi.org/10.1090/S0273-0979-1985-15360-1
MathSciNet review:
788390
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Ravindra S. Kulkarni and John W. Wood, Topology of nonsingular complex hypersurfaces, Adv. in Math. 35 (1980), no. 3, 239–263. MR 563926, https://doi.org/10.1016/0001-8708(80)90051-1
- 2. Helmut A. Hamm and Lê Dũng Tráng, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317–355. MR 401755
- 3. A. Libgober, Alexander invariants of plane algebraic curves, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 135–143. MR 713242
- 4. Beniamino Segre, Some properties of differentiable varieties and transformations: with special reference to the analytic and algebraic cases, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. MR 0089461
- 5. Egbert R. Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933), no. 1-4, 255–260. MR 1506962, https://doi.org/10.2307/2371128
- 6. Oscar Zariski, Algebraic surfaces, Second supplemented edition, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61. MR 0469915
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 14F20, 57M05, 14H20, 57M10, 14J17, 57M15
Retrieve articles in all journals with MSC (1980): 14F20, 57M05, 14H20, 57M10, 14J17, 57M15
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1985-15360-1