L^2 HARMONIC FORMS AND A CONJECTURE OF DODZIUK-SINGER

BY MICHAEL T. ANDERSON

Let M^n be a complete simply connected Riemannian manifold of sectional curvature K_M satisfying $-a^2 \leq K_M \leq -1$, $a \geq 1$. Let $\mathcal{H}_p^2(M^n)$ denote the space of L^2 harmonic p-forms on M, i.e., p-forms $\omega \in \Lambda^p(M^n)$ such that

$$\Delta \omega = 0, \quad \int_{M^n} \omega \wedge * \omega = \int_{M^n} |\omega|^2 dV < \infty.$$

It is clear that $\mathcal{H}_p^2(M^n)$ is naturally isomorphic to \mathcal{H}_2^{n-p} under the Hodge $*$ operator, and $\mathcal{H}_2^2(M^n) = 0$. Further, it is known [2] that $\mathcal{H}_2^2(M^n)$ naturally injects into the L^2-cohomology of M^n. Dodziuk and Singer (see [3, 4 and 6]) have conjectured that $\mathcal{H}_2^p(M^n) = 0$ if $p \neq n/2$ and $\dim \mathcal{H}_2^{n/2} = \infty$ if n is even. An affirmative solution of this conjecture implies, by means of the L^2 index theorem for regular covers of Atiyah [1], a positive solution of the well-known Hopf Conjecture: If M^{2m} is a compact manifold of negative sectional curvature, then $(-1)^m \chi(M^n) > 0$.

Dodziuk [3] has proved the L^2 form conjecture for rotationally symmetric metrics—in particular for the space forms $H^n(-a^2)$ of curvature $-a^2$. Donnelly and Xavier [5] have recently obtained results in case the curvature of M^n is sufficiently pinched: They show $\mathcal{H}_2^p(M^n) = 0$ if $0 < p < (n - 1)/2$ and $a < (n - 1)/2p$.

In this note, we outline the construction of counterexamples to the L^2 form conjecture, in every dimension and degree except the middle. Our main result is

THEOREM. For any $n \geq 2$, $0 < p < n$ and $a > |n - 2p|$, with $a \geq 1$, there exist complete simply connected Riemannian manifolds M^n with

$$-a^2 \leq K_M \leq -1$$

such that $\dim \mathcal{H}_2^p(M^n) = \infty$.

These manifolds have large isometry groups, $I(M) = O(2p - 1, 1) \times O(n - 2p + 1)$: the principal orbits have codimension $n - 2p$. However, $I(M)$ does not have discrete cocompact subgroups and thus M^n cannot be used to construct counterexamples to the Hopf conjecture. There are quotients of the topological form $\overline{M}^{2p-1} \times \mathbb{R}^{n-2p+1}$, where \overline{M}^{2p-1} is a compact manifold of curvature -1.

Received by the editors January 29, 1985.

1980 Mathematics Subject Classification. Primary 58C35, 58G05, 53C20.

1NSF Mathematical Sciences Postdoctoral Fellow.

©1985 American Mathematical Society

0273-0979/85 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
OUTLINE OF CONSTRUCTION. We define the manifolds M^n to be warped products

$$M^n = H^{2p}(-a^2) \times_f S^{n-2p}(1),$$

where $S^{n-2p}(1)$ is the space form of curvature +1 and $f: H^{2p}(-a^2) \to R$, $f(x) = \sinh s(x)$, where s is the distance to a fixed totally geodesic hyperplane $H^{2p-1} \subset H^{2p}(-a^2)$. The metric on M^n is given by

$$ds^2 = ds_{H^{2p}(-a^2)}^2 + f^2 ds_{S^{n-2p}(1)}^2.$$

One easily verifies that (M^n, ds^2) is a complete Riemannian manifold, diffeomorphic to R^n.

(i) CURVATURE OF M: Let $\{X_i\}$ be a local orthonormal framing of $H^{2p}(-a^2)$ by eigenvectors of $D^2 f$ and $\{V_j\}$ a local orthonormal framing of $S^{n-2p}(1)$. One may show that the family of 2-forms $\{X_i \land X_j\}$, $\{X_i \land V_j\}$, $\{V_i \land V_j\}$ diagonalizes the curvature operator $\mathcal{R}: \Lambda^2(TM) \to \Lambda^2(TM)$ with corresponding sectional curvatures $-a^2$, $-a \coth s \cdot \tanh as$, -1. In particular, the sectional curvatures of M lie in the range $[-a^2, -1]$.

(ii) HARMONIC FORMS ON M: Let $\omega \in \Lambda^p(H^{2p}(-a^2))$ be invariant under reflection through H^{2p-1} and extend ω to M by defining it to be invariant under the isometric $SO(n-2p+1)$ action on M. One computes that

$$\Delta_M \omega = \Delta_{H^{2p}} \omega + (-1)^p [d \circ \iota_F - \iota_F \circ d] \omega$$

where $F = (n-2p) df/f$ is the negative of the mean curvature of $S^{n-2p} \subset M^n$ and ι denotes interior multiplication. We outline a procedure reducing the case of general p to $p = 1$. First, note the identity

$$H^{2p}(-a^2) = H^2(-a^2) \times_g H^{2p-2}(-a^2),$$

where $g: H^2(-a^2) \to R$, $g(x) = \cosh ar(x)$, r is the distance function to a fixed point $0 \in H^2(-a^2)$. Further, under this decomposition, F is tangent to the $H^2(-a^2)$ factors. Set

$$\omega = \phi \land \eta, \quad \phi \in \Lambda^1(H^2(-a^2)), \quad \eta \in \Lambda^{p-1}(H^{2p-2}(-a^2)).$$

If η is any harmonic $(p-1)$-form on $H^{2p-2}(-a^2)$, then ω satisfies (1) if and only if

$$\Delta \phi - [d \circ \iota_F - \iota_F \circ d] \phi = 0 \quad \text{on } \Lambda^1(H^2(-a^2)).$$

To study the solutions of (2), set $\phi = du$ and use the conformal equivalence of $H^2(-a^2)$ with $\Omega = \{(x, \theta): x \in R, \ \theta \in (-\pi/2, \pi/2)\}$ to obtain the equivalent equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\phi(\theta)}{\partial \theta^2} + \phi(\theta) \frac{\partial u}{\partial \theta} = 0,$$

where $\phi(\theta) = (1/f_1)(\partial f_1/\partial \theta)$ and $f_1 = f|_{H^2(-a^2)}$: explicitly,

$$f_1 = f_1(\theta) = \frac{1}{2} \left[\frac{\alpha^{1/\alpha} - \beta^{1/\alpha}}{\cos^{1/\alpha} \theta} \right]$$

where $\alpha = 1 + \sin \theta$, $\beta = 1 - \sin \theta$. Note that ϕ degenerates on $\partial \Omega$. We may assume, without loss of generality, that $(n-2p) > 0$, so $\phi > 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It is now quite straightforward to verify that (3) has solutions, smooth up to \(\partial \Omega \). If we conformally identify \(H^2(-a^2) \) with \(B^2(1) \) with the flat metric, one may produce an infinite-dimensional space of solutions of (3) with \(|du|_\infty < 1 \).

(iii) \(L^2 \) Estimate: First, we recall that \(|\omega|^2 = \int \omega \wedge * \omega \) is a conformal invariant for forms in the middle dimension. For \(\omega \) as above, we have

\[
\int_{M^n} |\omega|^2 = \int_{H^{2p} \times S^{n-2p}} |\omega|^2 f^{n-2p} dV_H dV_S
\]

\[
= \text{vol}(S) \int_{H^2 \times H^{2p-2}} |\phi|^2 |\eta|^2 f^{n-2p} dV_H^2 dV_{H^{2p-2}}
\]

\[
\leq \text{vol} S^{n-2p} \cdot \text{vol} B^{2p-2}(1) \cdot \int_{B^2} f^{n-2p} dV_B,
\]

where we have used the conformal equivalence of \(H^k(-a^2) \) with \(B^k(1) \), \(k = 2, 2p - 2 \) and assumed that \(\eta \) is a harmonic \((p - 1)\)-form with \(|\eta|_\infty \leq 1 \) with respect to the flat metric on \(B^{2p-2}(1) \), e.g. \(\eta = (1/(p-1)! \) \(dx_1 \wedge \cdots \wedge dx_{p-1} \).

One checks that

\[
\int_{B^2(1)} f^{n-2p} dV < c \cdot \int_0^{\pi/2} \cos^{-(n-2p)/a} \theta \, d\theta,
\]

so that if \((n-2p)/a < 1\), one has \(\int_{M^n} |\omega|^2 < \infty \).

Further discussion and examples will appear elsewhere.

REFERENCES

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, 35, ROUTE DE CHARTRES, 91440 BURES-SUR-YVETTE, FRANCE

Current address: Department of Mathematics, California Institute of Technology, Pasadena, California 91125