$L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in ${\mathbf {R}}^2$
HTML articles powered by AMS MathViewer
- by Hasse Carlsson, Michael Christ, Antonio Cordoba, Javier Duoandikoetxea, Jose L. Rubio de Francia, James Vance, Stephen Wainger and David Weinberg PDF
- Bull. Amer. Math. Soc. 14 (1986), 263-267
References
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330
- A. Córdoba, A. Nagel, J. Vance, S. Wainger, and D. Weinberg, $L^p$ bounds for Hilbert transforms along convex curves, Invent. Math. 83 (1986), no. 1, 59–71. MR 813582, DOI 10.1007/BF01388753 [DRdF] J. Duoandikoetxea and J. L. Rubio de Francia (to appear).
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. MR 466470, DOI 10.1073/pnas.75.3.1060
- Alexander Nagel, James Vance, Stephen Wainger, and David Weinberg, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), no. 3, 735–744. MR 714828, DOI 10.1215/S0012-7094-83-05036-6
- Alexander Nagel, James Vance, Stephen Wainger, and David Weinberg, Maximal functions for convex curves, Duke Math. J. 52 (1985), no. 3, 715–722. MR 808100, DOI 10.1215/S0012-7094-85-05237-8
- Alexander Nagel and Stephen Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235–252. MR 423010, DOI 10.1090/S0002-9947-1976-0423010-8
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
Additional Information
- Journal: Bull. Amer. Math. Soc. 14 (1986), 263-267
- MSC (1980): Primary 44A15
- DOI: https://doi.org/10.1090/S0273-0979-1986-15433-9
- MathSciNet review: 828823