An almost-orthogonality principle with applications to maximal functions associated to convex bodies
HTML articles powered by AMS MathViewer
- by Anthony Carbery PDF
- Bull. Amer. Math. Soc. 14 (1986), 269-273
References
- J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. MR 868898, DOI 10.2307/2374532 2. J. Bourgain, Maximal functions in R (preprint).
- Anthony Carbery, Radial Fourier multipliers and associated maximal functions, Recent progress in Fourier analysis (El Escorial, 1983) North-Holland Math. Stud., vol. 111, North-Holland, Amsterdam, 1985, pp. 49–56. MR 848141, DOI 10.1016/S0304-0208(08)70279-2 4. A. Carbery, Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem (in preparation). 5. H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers (manuscript). 6. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates (preprint). 7. C. Sogge and E. M. Stein, Averages of functions over hypersurfaces in R (preprint).
- E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 359–376. MR 663787, DOI 10.1090/S0273-0979-1982-15040-6
- E. M. Stein, Some results in harmonic analysis in $\textbf {R}^{n}$, for $n\rightarrow \infty$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 71–73. MR 699317, DOI 10.1090/S0273-0979-1983-15157-1
- E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in $\textbf {R}^{n}$ for large $n$, Ark. Mat. 21 (1983), no. 2, 259–269. MR 727348, DOI 10.1007/BF02384314
Additional Information
- Journal: Bull. Amer. Math. Soc. 14 (1986), 269-273
- MSC (1985): Primary 42B15, 42B25
- DOI: https://doi.org/10.1090/S0273-0979-1986-15436-4
- MathSciNet review: 828824