Compact Riemannian manifolds with positive curvature operators
HTML articles powered by AMS MathViewer
- by John Douglas Moore PDF
- Bull. Amer. Math. Soc. 14 (1986), 279-282
References
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics, No. 55, Springer-Verlag, Berlin-New York, 1968 (German). MR 0229177, DOI 10.1007/978-3-540-35901-2
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388 [GL] R. Gulliver and H. B. Lawson, The structure of stable minimal hypersurfaces near a singularity (to appear).
- John Douglas Moore, On stability of minimal spheres and a two-dimensional version of Synge’s theorem, Arch. Math. (Basel) 44 (1985), no. 3, 278–281. MR 784099, DOI 10.1007/BF01237864
- J. Sacks and K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, DOI 10.2307/1971131
- A. J. Tromba, A general approach to Morse theory, J. Differential Geometry 12 (1977), no. 1, 47–85. MR 464304, DOI 10.4310/jdg/1214433845
- K. Uhlenbeck, Morse theory on Banach manifolds, J. Functional Analysis 10 (1972), 430–445. MR 0377979, DOI 10.1016/0022-1236(72)90039-0
Additional Information
- Journal: Bull. Amer. Math. Soc. 14 (1986), 279-282
- MSC (1980): Primary 53C20
- DOI: https://doi.org/10.1090/S0273-0979-1986-15440-6
- MathSciNet review: 828826