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ON THE REAL SPECTRUM OF A RING 
AND ITS APPLICATION TO SEMIALGEBRAIC GEOMETRY 

BY EBERHARD BECKER 

Introduction. This paper is meant as an introduction and a guide to some 
recent developments in real algebraic geometry — more precisely, in semialge-
braic geometry. In real algebraic geometry one is concerned with the set of real 
points V(R) of a variety V defined over R. More generally, one may replace the 
field of real numbers R by any real closed field. Real algebraic geometry is 
clearly a part of general algebraic geometry and therefore there seems to be no 
need for special considerations, i.e. special notions, tools, etc. However, in 
dealing with the set of real points V(R) one encounters new phenomena which 
are not, or at least not easily, treatable by the general methods of algebraic 
geometry. To give examples, let V be an affine variety over R. Then V(R) can 
be regarded as an algebraic subset of some suitable RN, i.e., a subset defined by 
a finite set of polynomial equations Fx = 0 , . . . , Fr = 0 where Ft e 
R[ Xv..., XN]9 i = 1 , . . . , r. Consequently, V(R) carries the subspace topology 
inherited from R^. Even if V is irreducible it may happen that V(R) is not a 
connected topological space. Note that the corresponding set of complex 
points V(C) is always connected if V is irreducible. A typical example is 
provided by the elliptic curve E (Figure 1). 
In this example, is (R) has two components Q , C2, namely 

Ci = {(x,y)e R 2 b 2 = x(*2 - i), * < o}, 

C2 = { ( * , y ) ^ R 2 \ y 2 = x(x2 - l ) , x > 1}, 

We notice that the components are described by equalities and inequalities. 
This is quite generally true: V(R) always has a finite number of components 
each of which can be described by a finite number of polynomial equalities 
and inequalities, cf. [Lo, Wh]. 

Thus, one is naturally led to consider subsets of V(R) which can be 
described by finitely many polynomial equalities and inequalities: these are the 
so-called semialgebraic subsets of V(R). 

Semialgebraic subsets of V(R) or RN arise in the above-mentioned study of 
components. However, they are to be considered as the natural objects of study 
in real algebraic geometry not only because of this occurrence. Their definition 
takes account of the entire structure of the real numbers as an ordered field. 
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e 
FIGURE 1 

Since an algebraically closed field cannot be ordered there is no similar notion 
over the complex field. It is the order of R which enables one to define interior 
and exterior of figures, e.g. the interior of circles, polygons, etc. 

So one may say that semialgebraic sets are in some respects the genuine 
objects of real algebraic geometry. Consequently, real algebraic geometry 
should be extended to include the investigation of semialgebraic sets, i.e. it 
should be extended to semialgebraic geometry. A good account of currently 
studied problems in semialgebraic geometry can be found in the proceedings 
[CT-C-M-R, DR], in Brumfiel's book [Brul], in volume 14, number 4 of the 
Rocky Mountain Journal (1984), and in the book of Delfs and Knebusch 
[DK3]. 

As explained, semialgebraic geometry deals with problems which do not 
completely fit in classical algebraic geometry. This raises the question: Are 
there suitable notions and tools to treat these problems properly? It is the 
conviction of several mathematicians including the author, that the appropriate 
notion has been found. It is the new notion of the real spectrum of a ring 
which was introduced by M. Coste and M. F. Coste-Roy about 1979 [CC, CC l5 

CR]. In this concept ideas from the Zariski-spectrum of a ring are cleverly 
combined with concepts from the theory of formally real fields. That this latter 
theory naturally plays a role in real algebraic geometry was already obvious in 
Artin's solution of Hubert's 17th problem. Today it seems that the notion of 
the real spectrum of a ring may serve as a building block for a general 
semialgebraic geometry in the same way that the Zariski spectrum of a ring did 
for Grothendieck's formulation of algebraic geometry. In particular, it will 
certainly stimulate the further development of real commutative algebra. 

Let A denote any commutative ring with unit. Given a prime ideal t) its 
residue field quot(^4/t)) is denoted by k(t}). As^a set, the real spectrum of^, 
denoted by ^-Spec A, consists of all pairs (t), P) where t) e Spec^l and P is 
an order in Jc(t)). The topologyjs defined as follows: Given a e A, set 
D(a) = {(t) ,P) |ö £ Q, a + t) e P). Now by definition, these sets D(a\ 
a G A, constitute a subbasis for the topology. In this topology, ^-Specv4 turns 
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out to be a quasicompact space. Moreover, the assignment A •-> ^-Spec4 is, in 
a natural way, a contravariant functor from the category of commutative rings 
with unit into the category of topological spaces. 

As mentioned above, the notion of the real spectrum was introduced by 
Coste and Coste-Roy. They were led to it by topos-theoretic considerations. In 
this present paper, we will follow a different approach. We start off with 
Artin's solution of the 17th problem. Today, the result is usually derived from 
the Artin-Lang homomorphism theorem. In the first section the notion of the 
real spectrum is developed from an analysis of this theorem. One may even say 
that this approach provides a clearer understanding of the Artin-Lang theo
rem. 

The second section is devoted to a general study of the real spectrum as a 
topological space and as a functor. In the third section we shall deal with 
certain applications to semialgebraic geometry. Here, we are concerned with an 
affine variety M defined over a real closed field R and semialgebraic subsets of 
M{R), the set of real points of M. The semialgebraic subsets of M(R) are in 
one-to-one correspondence with the constructible subsets of ât-$pecR[M]9 

where R[M] denotes the coordinate ring of M. A constructible set in &-SpecA 
is any subset which can be obtained from the D(a)'s, a e A, as above, by 
taking a finite number of intersections, unions and complements. That this 
correspondence is a bijection is essentially equivalent to the Artin-Lang 
theorem, and it is used in particular, following v. d. Dries, to prove the 
so-called finiteness theorem of semialgebraic geometry. This theorem states 
that any open semialgebraic set can be defined by a finite number of strict 
inequalities fx > 0,..., fs > 0 where ƒ) e jR[M]. Bröcker's recent results on the 
number of the inequalities needed are explained. 

In the last section, we shall discuss the use of the real spectrum of a ring for 
a possible foundation of an "abstract" semialgebraic geometry. The main part 
of this section is concerned with the construction of a certain sheaf on any 
constructible subset X in the real spectrum of a ring. This sheaf is called the 
sheaf of abstract semialgebraic functions on X and was independently intro
duced by G. Brumfiel and N. Schwartz. X together with this sheaf (or possibly 
another, cf. [R]) may serve as the building block of an abstract semialgebraic 
geometry. 

There are other introductions to the theory of the real spectrum, cf. [CCI, 
L2, Kn]. They are all highly recommended. The reader will notice that different 
points of view are taken in these papers, and different notations are used. The 
notation &-SpecA, used in this paper, is chosen to reflect the fact that one may 
understand the theory of the real spectrum as a theory of ring homomorphisms 
into real closed fields. In a corresponding manner the Zariski-spectrum Speĉ 4 
is related to homomorphisms into algebraically closed fields. Generalizing 
these two examples, one may specify a class Jf of fields and consider only 
homomorphisms from a ring A into fields belonging to Jf. This would then 
lead to a J^spectrum of A, naturally denoted by J^SpecA In the case of the 
real spectrum, <% means the class of real closed fields. A notation like 
J^Spec4 seems flexible enough to cover further examples. At present, it is 
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already clear that one has to study the formally p-adic spectrum of a ring in 
order to globalize the results of [PR], cf. [BS]. 

The forthcoming book of Bochnak, Coste and Roy will present semialge-
braic geometry in great detail. The author hopes that this present paper will 
stimulate interest in semialgebraic geometry and that the reader will pass on to 
this comprehensive book. 

1. From the solution of Hubert's 17th problem to the real spectrum. In this 
section we first recall the solution of Hubert's 17th problem which is based on 
the Artin-Lang homomorphism theorem. This latter theorem provides, in fact, 
more than the solution of this famous problem (which is, of course, already 
important enough). Indeed, it leads directly to defining the real spectrum, 
^-Spec^4, of a ring A. Using this notion, a better understanding of the 
Artin-Lang homomorphism theorem can be obtained. 

We will not be concerned with the 17th problem in its full generality, nor in 
its original form; see the paper of McKenna [Mc] for a comprehensive 
discussion. We fix a real closed field R and we will deal with the following 
version: 

Let the polynomial feR[Xl9...9 Xn] be positive on Rn
9 i.e. 

f(x) > 0 for every x e Rn. Is ƒ then a sum of squares of 
rational functions in R(Xl9..., Xn)1 

As is well known, E. Artin answered this question in the affirmative [A] (in fact 
he dealt with a slightly different situation). He first studied sums of squares in 
arbitrary fields K. Set LK2 = {L[x2 \ r e N, xl9 . \ . , xr e K}. If chartf = 2 
then LK2 = K2\ if charü: # 2 but -1 e ZK2 then LK2 = K because of the 
identity a = ((a + l ) /2 ) 2 + (-l)((a - l ) /2)2 . Hence, the fields with the prop
erty - 1 ^ E A ' 2 are left. These fields are called formally real and for those 
fields Artin proved [A] the 

(1.1) PROPOSITION. £ K 2 = HP where P ranges over all orders ofK. 

Recall that an order P of K is any subset of K satisfying P + P c P, 
? P c ? , ? u - P = A , ? n - ? = { 0 } , in other words, the orders are just the 
cones of positivity of the total order relations on K. 

The proof of (1.2) is easy and can be found, e.g., in [W, P, LI]. 
In the next step of his proof Artin had to show that a polynomial ƒ, positive 

on Rn
9 lies in every order P of the rational function field R(Xl9...9 Xn)\ (1.1) 

would then give the desired conclusion ƒ e £ R(Xl9..., Xn)
2. Today, this is 

often derived from the so-called Artin-Lang homomorphism theorem [La, p. 
279, Theorem 5], for affine jR-algebras which are, by definition, nothing but 
the finitely generated commutative .R-algebras. We will proceed in this manner. 

(1.2) THEOREM. Let A be an affine R-algebra which is a domain and denote its 
quotient field by L. If L is formally real (or, equivalently, if the unique order of 
R can be extended to L) then there is an R-algebra homomorphism <p: A -> R. 

In order to apply this result we start with the function field L0 — 
jR( Xl9..., Xn) and ƒ G A0 = R[ Xl9..., Xn] which is assumed not to be a sum 
of squares in L0. By (1.1), we find an order P with ƒ £ P, hence -ƒ G P. Now 
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consider the function field L = L0(J^f) which is the quotient field of A = 
A0[l/f, yf-f ]. It is also formally real since the assumption -1 e EL2 , say 
- 1 = L(a, + b?Pf )2, a,., 6, e L0, would imply (E6 2 ) / = 1 + Laf and finally 
ƒ e £ L Q C P. By (1.1) we therefore get a homomorphism q>: A ^> R. We have 
(p(ƒ) # 0 since ƒ is a unit of A. We then obtain <p(-/) = <p(yfj)2 > 0, hence 
<p(/) = /(<p(Ar

1),...,<p(^w)) < 0, which means that ƒ is strictly negative at 
the point (<p(A\),..., <p(Xn)) e P". Thus we have solved, following E. Artin, 
the 17th problem of Hilbert. 

It was the application of (1.2) to the larger function field L and the algebra 
A instead of P (X l 9 . . . , Xn) and R[Xl9...9Xn] that brought the contradiction. 
This flexibility with respect to the variation of the "parameters" L and A 
allows a version of the Artin-Lang homomorphism theorem, which im
mediately points to a description of orderings by ultrafilters. To this end, we 
introduce a few algebraic-geometric notions: Let A be an affine P-algebra, for 
simplicity assume A = R[XV..., Xn]/a. We attach to A the real affine 
algebraic set M(R) = {x e Rn \ F(x) = 0 for all F G a }. The algebra A has a 
natural representation as a ring of P-valued functions on M(R): if ƒ = F + a, 
F G R[Xl9..., Xn] and x G M(P), then f(x) := F(x). We have the natural 
map 

M(R) -> Spec.4, 

It is easily verified that this map is injective, and the image is just the set of 
maximal ideals with R as their residue field. Consequently, M(R) is referred 
to as the set of real points of the affine scheme M = Spec A. 

A point t) G Spec A, i.e. a prime ideal, is called regular if the local ring A^ is 
a regular local ring [K]. Accordingly x G M(R) is called regular if its local ring 
Ox := Amx is regular. The existence of regular points is crucial, as we shall see. 
We set M(i*) reg:= {x e M(R)\x regular}. 

EXAMPLES, (i) A=X{X, Y]/(X2 + Y2 + 1), M(R) = 0 . 
(ii) ^ = R[X, Y]/(X2 + 7 2) , M(R) = {(0,0)}, M(R)reg = 0 . 
(iii) A = R [ * , 7 ] / ( 7 2 - * 3 ) , M(R)reg = M(R)\{(0,0)}, M(R): 

The following variant of the Artin-Lang homomorphism theorem was proved 
in [B, (1.3)]. The statement seems much stronger than that of (1.2). But in fact, 
it is a consequence of (1.2) and, in turn, implies the previous formulation (1.2). 
To see this take n = 1, fx = 1. In comparing the formulation of the next 
theorem with that of loc. cit. (1.3) one should note that M(R) -> Hom^(^4, P), 
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x •-> {ƒ •-> ƒ(*)} is a bijection, where H o m ^ ^ , P) is the set of all unitary 
P-algebra homomorphisms from A to R. 

(1.3) THEOREM. Let L be the formally real quotient field of the affine R-algebra 
A and let f v . . . , fn e A \ {0} be given. Then the following statements are 
equivalent: 

(i) There exists a regular real point x e M(R) withfx{x) > 0 , . . . , fn(x) > 0. 
(ii) There is an order P of L with /1? . . . ,ƒ„ e P. 

The equivalence of the two statements (i) and (ii) indicates a close link 
between the two notions of positivity for a function ƒ e A, namely being 
abstractly positive, i.e. lying in some order, and being positive as a function at 
some point. It is this connection we wish to pursue. For this purpose, we need 
further notions. The real closed field R is clearly a topological field. We 
therefore have a topology on Rn and consequently the subspaçe topology on 
M(R). This topology is referred to as the strong topology. A neighborhood 
basis for a point x e M(R) is given by the balls P(x, e) n M(P), e e P , 
e > 0, where y e P(x, e) iff d(x, y)2 = EJI*, - yt\

2 < e2. 
We further have the Zariski topology on Spec^l [Bo2]. A basis for this 

topology is given by the sets £/(ƒ) = {t) e Spec A \ f £ t)}; the closed sets are 
given by V(a) = (t) e SpecA\a c t)}, a an ideal of A. Via the embedding 
M(R)<-* Spec A we get the subspace Zariski topology on M(R) with a basis 
given by {x G M ( P ) | f(x) # 0 } , f e A. This second topology is of course 
coarser than the strong topology on M(R). In general it is strictly coarser, as 
can be seen from the example A = R[X], M(R) = P , where the nonempty 
Zariski-open sets are just the complements of the finite sets. 

The real spectrum ^?-Specy4 will remedy this defect. We will have mappings 

M(R) £ j * Spec4 

V / Î 
^-Spec4 

such that the subspace topology on M(R) inherited from ^-Spec^4 is just the 
strong topology on M(R). 

For the moment, however, we are dealing with the Zariski topology on 
Spec A and the natural embedding MtR)'-* Spec A. We will need to describe 
the closure of a set S c M(R) in Spec A. 

Given t) e Specv4 we denote by k(t)) the residue field on ty, i.e. the quotient 
field of A/t). We have k(t)) - A^/\)A^. Now let 5 c M ( P ) be given, its 
closure in the Zariski topology of Spec A is denoted by Sz. It is obtained as 
follows: if S = 0 then Sz = 0 , if S * 0 then I(S):= f l ^ s t r ^ , is a radical 
ideal in the noetherian ring A, hence / ( 5 ) = t)x O ••• nt)r where the t), are 
all the minimal prime ideals of I(S). Note that this intersection is irredundant. 

(1.4) PROPOSITION. SZ = V(t)x) U • • • u V(t)r). Moreover, k(\)t) is formally 
real for i = 1 , . . . , r. 

PROOF. By the general theory of Spec,4 we have Sz = V(I(S)) = UJ^t) , ) . 
To show that all k{t)t) are formally real we have to prove: if Ef/)2 e t). then 
A, . . . , ƒ , e Q,.. For simplicity, set Ï = 1. Pick g G (t}2 n • • • t)r)\t)i*, then 
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£ï(«//)2 G *h n * * * n t^r = /( 5 ' ) - T h i s m e a n s £(&//)(*)2 = 0 for all x e S, 
hence g^ e 7(5) for all j's. Since g € t^ we get fj e t)x for j = 1 , . . . , 5. 

S is called Zariski-dense if Sz = Spec A In case Nil(yl) = 0 we have 
(1.5) S is Zariski-dense if and only if : ƒ = 0 on S implies ƒ = 0. 

The basic result in this regard is the following one. 

(1.6) PROPOSITION. Assume that A is an integral domain. Then every subset 
S c M(R) which is open in the strong topology and contains a regular point is 
Zariski-dense. 

This was first proved by Dubois and Efroymson [DE, p. 134, Theorem 4.9]. 
The proof as given in [B, p. 8, (1.5)] only uses the Artin-Lang homomorphism 
theorem and is valid over an arbitrary real closed field. 

Now we are almost prepared to state and prove the first part of the 
ultrafilter theorem. We only need the notion of a semialgebraic set in M(R). 
Given arbitrary finitely many elements ƒ, gv..., gr e A we set 

{ / = 0 , g l > 0 , . . . , g r > 0 } 

:= {x e M(R)\f(x) = 0, gi(x) > 0, i = l , . . . , r } . 

Then, by definition, a semialgebraic set is a finite union of sets of the type 
{ ƒ = 0, gx > 0 , . . . , gr > 0}. Intuitively, a set is semialgebraic (for short: s.a.) if 
it can be described by a finite number of equalities and inequalities. One might 
wonder why only one equation occurs in {ƒ = 0,gx > 0 , . . . , gr > 0}. The 
reason is that the statement fx = 0 , . . . , fs = 0 is equivalent to H[ f2 = 0. Note 
that there is no such way to combine several inequalities. Examples for this are 
easily provided in the case of A = R[M]. The semialgebraic subsets of M(R) 
form a lattice y(M(R)) closed even with respect to taking the complement. It 
is the lattice, with complement, which is generated by the sets {ƒ> 0}, ƒ e A. 
As in any lattice there are filters in y(M(jR)), and the maximal filters are called 
ultrafilters. Here, slightly generalizing the definition in [Bi, p. 25], a filter in a 
lattice ££ is any dual ideal ,ƒ =£ £?. 

We now can state the ultrafilter theorem for orders of a function field. It is 
due to Brumfiel [Brul, p. 232 ff.]. Let L be a function field over R9 which is 
the quotient field of an affine ZÊ-algebra A. Given an order P of L we assign to 
P the filter ^(P) in y(M(R)) which is generated (as a filter) by the 
semialgebraic subsets ( fx > 0 , . . . , fr > 0} of M(R\ where r e N , f G A, 
f e P \ {0} for / = 1 , . . . , r. Conversely, given any filter F in y(M(R)) set 

0>(F) = j ƒ G L | fg2 G A and { fg2 > 0} e F for some g^A \ { 0 } } . 

(1.7) ULTRAFILTER THEOREM FOR ORDERS. The mapping P •-> J**(P) jS a 

bijection, with inverse F -> &(F), between the set of orders of L and the set of 
ultrafilters in y(M(R)) which contain only Zariski-dense semialgebraic subsets of 
M(R). 

PROOF. Let the order P be given. The sets {fx > 0 , . . . , fr > 0} are clearly 
open in the strong topology. Hence, by (1.3) and (1.6) &{P) contains only 
Zariski-dense sets. In order to show that J ^ ( JP ) is an ultrafilter we have to 
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prove that any semialgebraic subset Tot M(R) satisfies T G J^(P) or M(R)\ 
T =: Tc G ̂ (P). Suppose Tc <£ &(P). We want to show T G J^(P). TO this 
end we may assume that T is of the form T — { ƒ = 0, gx > 0 , . . . , gr > 0}. If 
ƒ # 0 we would get ƒ 2 G ,4 O P, { ƒ 2 > 0} c Tc, thus P c G J*"(P), which is a 
contradiction. Therefore ƒ = 0, and from Tc £ ^(P) we derive gv...,gr^ P 
yielding F G ^ ( P ) . 

Conversely let F be an ultrafilter of Zariski-dense semialgebraic subsets of 
M(R). If fl9 f2 G P := <2*(F), and with ft e ^ \ {0}, fg2 G ,4, { fg2 > 0} G 
J*\ then 

U*,2>0}c{/,(glg2)2>0} 
and 

{ te l > 0} n {/2g2
2 > 0} c {/(glg2)2 > o}, 

where ƒ denotes /x 4- f2 or ^ / j . This shows { f(gig2)
2 > 0} e & and P + P 

c P, P P c P . If fGPn-P then {/g2 > 0} G F, {-fh2 > 0} <= F, so 
{f(gh)2 = 0} G p. By assumption, P contains only Zariski-dense subsets, 
which implies, in view of (1.5), that f(gh)2 = 0 and ƒ = 0. To show P U - P 
= L take / G L , ƒ # 0 and choose g G V4 \ {0} with fg2 G ^4. Because of 
M(R) = {/g2 > 0} Ù { fg2 = 0} Ù {-fg2 > 0} G P we see that at least one of 
these three semialgebraic subsets must lie in P. By the above argument, 
{/g2 = 0 } G F i s impossible, from which we get ƒ G P U - P . 

It remains to show that the mappings P •-» ^ ( P ) , F »-» ^ ( P ) are inverse to 
each other. If P is given then, for any ƒ G 4̂ n P, we have { ƒ > 0} G J^(P). 
Thus AnPcz &>(&{P)\ showing P = ^ (^" (P) ) . If P and f <= 0>(F) n ^ 
are given then, as above, {/g2 > 0} G F implies ƒ = 0 or { fg2 > 0} G F. As 
{ /g 2 > 0} c { ƒ > 0}, we get {ƒ > 0} G F. Hence &(0>(F)) c F, yielding 
J£-(^(F)) = F. 

The ultrafilters J^(P) consist of subsets of the topological space M(R) with 
the strong topology. It is rather natural to look at limit points of those filters. 
These filters J^(P) are not filters with respect to the power set of M(R), they 
are, following [Bol], a filter basis or prefilters. Nevertheless, we have the 
notion of a limit point in the following sense: given any filter basis^ F in a 
topological space X we call x G X a limit point of F if x G DSGFS. In our 
situation we first see that a filter J*"(P) has at most one limit point. Assume on 
the contrary that x, y G Rn are distinct limit points and (distance)2 = 
d(x, y)2 = ZîiXj - yi)2 = e. Setting f(z) = \e - d(z, x)2 for z G M(P), we 
have constructed ƒ G A with ƒ(*) > 0 > f(y). If ƒ G P then { ƒ > 0} G J£"(P) 
and, using the assumption f(y)>0. If ƒ £ P one will equally derive a 
contradiction, this time f(x) < 0. 

It may happen that ^ ( P ) has no limit point on M(P) at all. In case 
lim &(P) = x G M(P) exists we call x the cewter of P: JC = c(P). 

To describe the center points we will make use of certain valuation rings. 
Because of later applications we will introduce them in a more general way 
than really needed here. Assume L is any ordered field and B is a local 
subring of L whose maximal ideal m is convex in B with respect to the order 
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of L. By definition this means that 0 < Ö < i , Û Ê 5, è G m implies a e m. 
Now let B be the convex closure of B in L, i.e. 

Ê = { a e L I |a| < a for some a G j 5 } . 

We further set 

m = { a G LI |<z| < 1/(1 4- a) for all a e P, a > 0}. 

In order to formulate the next result we follow the convention that, given two 
local rings Bl9 B2 in a field, Bx is said to be dominated by B2 (or: B2 

dominates Bx) if Bx c B2 and ml = Px n m2 where m, is the maximal ideal 
of Bt. In this case we write Bx< B2. 

(1.8) PROPOSITION. Assume the above hypothesis, then 
(i) B is a valuation ring with maximal ideal rît, 
(ii) B is dominated by P, 
(iii) the residue field B/xh is archimedean over P /m under the induced order 

which is defined as follows: e 4- rît > 0 iff e > 0. 

PROOF. That P is a ring is easily seen. Let a £ Ê. Then \a\ > a for all 
a G P, a > 0. Note that 1 4- a is a unit of 5 if a e P, a > 0 since 0 < 1 < 
1 4- a and m is convex. Hence, we get \a\ > 1 4- a and \a~l\ < 1/(1 4- a), in 
particular a'1 e P. Thus 2? is a valuation ring, the maximal ideal m of which 
is contained in the set {a e L | \a\ < 1/(1 4- a) for all a e P, a > 0}, as just 
proved. Conversely, if \a\ < 1/(1 4- a) for all a e 2?, a > 0, then |a_1 | > 1 4- a 
for all a e P, a > 0, which shows a~l £ 5, hence a e rît. From the convexity 
of m and the description of rît we get that P dominates B. The set 
(e 4- mIe e_P, e > 0} =:P is closed under addition and multiplication and we 
have P U - P = P/rît. If -1 e P then 1 4- e e rît for some e e 2?, e > 0. But 
1 4- e is a unit, as seen above, which is a contradiction. Thus P is an order of 
P/rît. From the definition of 5 one gets the remaining statement in (iii). 

Before applying the result (1.8) we would like to point out that it constitutes 
the essential part of Brumfiel's place extension theorem [Brul, p. 152, (7.7.4)]. 

We now return to the description of the center points. We take as L our 
function field over the real closed field R together with the given order P and 
as B the subfield R. In this case R is usually denoted by A(P, R) and (0) by 
7 (P ,P ) , see [LI, PC]. 

(1.9) PROPOSITION. Let an order P of L and x e M(R) be given. Then the 
following statements are equivalent: 

(i) x is the center of P. 
(ii) Ox is dominated by A(P, R). 

PROOF, (i) =» (ii) Consider ƒ e A, assume ƒ(*) > 0. If ƒ £ P then {-ƒ > 0} 
e &(P\ x G { ƒ < 0}, hence f(x) < 0. We thus have that f(x) > 0 implies 

ƒ e P. Now let ƒ be any element of A. Set e = 1 4- | / (JC) | ; then (e ± ƒ )(x) > 0, 
consequently e ± ƒ e P, ƒ e A(P9 P), and A c A(P, R). If f(x) = 0 we get 
(T? ± ƒ )(x) > 0, T) ± ƒ e P for all TJ G P, TJ > 0, hence mx c / ( P , R) and 
0 x ^ ( P , P ) . 

(ii) => (i) The distance function D: M(R) -» P , y •-» d(x, j ; ) 2 , lies in m,, 
hence e + D e P for all e > 0. This means that the open ball B(x,\/e) in 
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M(i*) lies in &(P) = F, therefore B(x, \/ë) n S * 0 for S e F, e > 0. Thus 
je G S. 

In the next theorem, the centers of orders are related to regular points. The 
result was first obtained by Dubois [Du, p. 62, Theorem 3]. 

(1.10) THEOREM. The set of centers of orders of L is the closure of M(P) r e g 

with respect to the strong topology. 

PROOF (Suggested by L. Bröcker). Let x = c(P). Take e E i î , e > 0. The 
function f(y) := e - d(x, y)2 is not zero. If ƒ £ P then S = {y\d(xy y)2 > 
e] e J^(P) , but x £ S. Hence ƒ e P and by (1.3) we find a regular point y 
with J(x, >>)2 < e> i-e- J G B(x,]fe). This holds for all e, which means x 
e M(Z£)reg. Conversely, if x e Af(P)reg then the open balls B(x, e) are open 
semialgebraic sets which contain a regular point, for e > 0. Hence, they are 
Zariski-dense by (1.6). Consider the filter P0 of semialgebraic subsets of M(R) 
generated by the open balls B(x, e). F0 only contains Zariski-dense subsets. Set 
P0 = &(F0) as in 1.7. As in 1.7 we show P0 + P0 c P0, P0P0 c P0, P0 n -P 0 

= {0}, L2 c P0. It is known, see e.g. [LI], that P0 c P for some order P. One 
sees J?(x, e) e J^(P) for all e, hence x = lim J^(P). 

The ultrafilter theorem and the notion of a center of an order allow us to 
interpret orders "geometrically" (at least in certain cases). 

EXAMPLES. (1) L = R(X), A = R[X] then M(R) = R. The semialgebraic 
subsets are finite unions of singletons and open intervals. An ultrafilter F 
therefore converges to a e R or to -oo or to 4- oo. Let lim F = a. Consider the 
function X - a. Either {X - a > 0} <= For {X - a < 0} e F. 

Let P = ^ ( P ) ; P is determined by P n R[X]. In the first case { X - a > 
0} e F, Le. I - Û G P , and / G R [ I ] is in P iff ƒ ^ 0 on some interval 
[a, a 4- e], e > 0. We symbolize this order by 

i/////// 

In the other case we have ƒ e P iff ƒ > 0 on some interval [a - e, a], e > 0; of 
course this is symbolized by 

///////L 

In case lim F = + oo, P G R[A"] is given as the set of ƒ 's which are positive 
for large values, i.e. have the highest coefficient positive. If l imp = -oo then 
ƒ e R[X] n &(P) iff (-l)nan > 0 where « = deg ƒ, an the highest coefficient. 

(2) L = R( X, Y), ,4 = R[X, 7] , M(R) = R2. In this case there is no such 
simple description as in (1). Consider for example the semialgebraic partition 
of R2 by transversal lines through x (Figure 2). There are at least four 
ultrafilters Ft with St e Ft; this means there are orderings Pt such that, if ƒ > 0 
on Si9 then ƒ e P.. If we further partition Sx into 7\, r2, T3 as in Figure 3, then 


