The moduli space of a punctured surface and perturbative series
HTML articles powered by AMS MathViewer
- by R. C. Penner PDF
- Bull. Amer. Math. Soc. 15 (1986), 73-77
References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281 [BE] B. Bowditch and D. B. A. Epstein, Triangulations associated with punctured surfaces, preprint (1985).
- D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980), no. 2, 109–157. MR 603127, DOI 10.1016/0196-8858(80)90008-1 [EP] D. B. A. Epstein and R. C. Penner, Teichmüller spaces of punctured surfaces, preprint (1984).
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI 10.1007/BF01388737
- J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), no. 3, 457–485. MR 848681, DOI 10.1007/BF01390325 [P] R. C. Penner, Perturbative series and moduli space, preprint (1985).
Additional Information
- Journal: Bull. Amer. Math. Soc. 15 (1986), 73-77
- MSC (1985): Primary 14H15, 30F35, 57N05; Secondary 05C30
- DOI: https://doi.org/10.1090/S0273-0979-1986-15439-X
- MathSciNet review: 838790