Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 838794
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Domingo Herrero
Title: Approximation of Hilbert space operators,
Additional book information: Pitman Publishing Inc., Boston, 1982, xiii + 255 pp., $23.95. ISBN 0-273-08579-4.

Author: Constantin Apostol
Title: Volume II Approximation of Hilbert space operators,
Additional book information: Lawrence Fialkow, Domingo Herrero and Dan Voiculescu, Pitman Publishing Inc., Boston, 1984, x + 524 pp., $29.95. ISBN 0-273-08641-3.

References [Enhancements On Off] (What's this?)

  • Constantin Apostol, On the norm-closure of nilpotents, Rev. Roumaine Math. Pures Appl. 19 (1974), 277–282. MR 361875
  • Constantin Apostol, On the norm-closure of nilpotents. III, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 2, 143–153. MR 417829
  • Constantin Apostol, Universal quasinilpotent operators, Rev. Roumaine Math. Pures Appl. 25 (1980), no. 2, 135–138. MR 577021
  • Constantin Apostol and Ciprian Foiaş, On the distance to bi-quasitriangular operators, Rev. Roumaine Math. Pures Appl. 20 (1975), 261–265. MR 370238
  • C. Apostol, C. Foiaş, and C. Pearcy, That quasinilpotent operators are norm-limits of nilpotent operators revisited, Proc. Amer. Math. Soc. 73 (1979), no. 1, 61–64. MR 512059, DOI 10.1090/S0002-9939-1979-0512059-0
  • Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, Some results on non-quasitriangular operators. II, III, IV, V, Rev. Roumaine Math. Pures Appl. 18 (1973). MR 333785
  • Hari Bercovici, A remark on “Some results on nonquasitriangular operators” (Rev. Roumaine Math. Pures Appl. 18 (1973), 309–324) by C. Apostol, C. Foiaş and D. Voiculescu, Rev. Roumaine Math. Pures Appl. 19 (1974), 577. MR 355657
  • Constantin Apostol, Domingo A. Herrero, and Dan Voiculescu, The closure of the similarity orbit of a Hilbert space operator, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 421–426. MR 648526, DOI 10.1090/S0273-0979-1982-15007-8
  • Constantin Apostol and Dan Voiculescu, On a problem of Halmos, Rev. Roumaine Math. Pures Appl. 19 (1974), 283–284. MR 338810
  • N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. (2) 60 (1954), 345–350. MR 65807, DOI 10.2307/1969637
  • Domingo A. Herrero, Closure of similarity orbits of Hilbert space operators. I, Rev. Un. Mat. Argentina 27 (1976), no. 4, 244–260 (Spanish). MR 512768
  • José Barría and Domingo A. Herrero, Closure of similarity orbits of nilpotent operators. I. Finite rank operators, J. Operator Theory 1 (1979), no. 2, 177–185. MR 532873
  • I. David Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365–371. MR 283610, DOI 10.1090/S0002-9947-1971-0283610-0
  • I. D. Berg, On approximation of normal operators by weighted shifts, Michigan Math. J. 21 (1974), 377–383(1975). MR 370235
  • L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^{\ast }$-algebras, operators with compact self-commutators, and $K$-homology, Bull. Amer. Math. Soc. 79 (1973), 973–978. MR 346540, DOI 10.1090/S0002-9904-1973-13284-7
  • L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
  • Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
  • Ciprian Foiaş, Carl Pearcy, and Dan Voiculescu, The staircase representation of biquasitriangular operators, Michigan Math. J. 22 (1975), no. 4, 343–352. MR 405146
  • P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283–293. MR 234310
  • P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
  • P. R. Halmos, Ten years in Hilbert space, Integral Equations Operator Theory 2 (1979), no. 4, 529–564. MR 555777, DOI 10.1007/BF01691076
  • Domingo A. Herrero, Normal limits of nilpotent operators, Indiana Univ. Math. J. 23 (1973/74), 1097–1108. MR 350476, DOI 10.1512/iumj.1974.23.23089
  • Domingo A. Herrero, Universal quasinilpotent operators, Acta Sci. Math. (Szeged) 38 (1976), no. 3-4, 291–300. MR 442728
  • Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472. MR 112040, DOI 10.1002/cpa.3160130309
  • W. Sikonia, The von Neumann converse of Weyl’s theorem, Indiana Univ. Math. J. 21 (1971/72), 121–124. MR 285928, DOI 10.1512/iumj.1971.21.21011
  • Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
  • Dan Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371–378. MR 343082
  • [W] H. Weyl, Über beschrankte quadratische Formen deren Differenzvollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.


    Review Information:

    Reviewer: Kenneth R. Davidson
    Journal: Bull. Amer. Math. Soc. 15 (1986), 91-98
    DOI: https://doi.org/10.1090/S0273-0979-1986-15447-9