A generalization of the Tarski-Seidenberg theorem, and some nondefinability results
HTML articles powered by AMS MathViewer
- by Lou van den Dries PDF
- Bull. Amer. Math. Soc. 15 (1986), 189-193
References
- A. M. Gabrièlov, Projections of semianalytic sets, Funkcional. Anal. i Priložen. 2 (1968), no. 4, 18–30 (Russian). MR 0245831
- Burghart Giesecke, Simpliziale Zerlegung abzählbarer analytischer Räume, Math. Z. 83 (1964), 177–213 (German). MR 159346, DOI 10.1007/BF01111199
- Robert M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), no. 2, 291–302. MR 564475, DOI 10.2307/2374240
- Heisuke Hironaka, Triangulations of algebraic sets, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 165–185. MR 0374131
- A. G. Khovanskiĭ, Fewnomials and Pfaff manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 549–564. MR 804711
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X [L1] S. Lojasiewicz, Ensembles semi-analytiques, mimeographed notes, Inst. Hautes Études Sci., 1965.
- S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 449–474. MR 173265
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley-Los Angeles, Calif., 1951. 2nd ed. MR 0044472, DOI 10.1525/9780520348097
- Lou van den Dries, Analytic Hardy fields and exponential curves in the real plane, Amer. J. Math. 106 (1984), no. 1, 149–167. MR 729758, DOI 10.2307/2374433
- Lou van den Dries, Remarks on Tarski’s problem concerning $(\textbf {R},\,+,\,\cdot ,\,\textrm {exp})$, Logic colloquium ’82 (Florence, 1982) Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp. 97–121. MR 762106, DOI 10.1016/S0049-237X(08)71811-1 [VdD3] L. van den Dries, Tarski’s problem and Pfaffian functions, Proc. Logic Colloquium, 1984 (to appear). [VdD4] L. van den Dries, lectures at University of Konstanz.
Additional Information
- Journal: Bull. Amer. Math. Soc. 15 (1986), 189-193
- MSC (1985): Primary 03E47
- DOI: https://doi.org/10.1090/S0273-0979-1986-15468-6
- MathSciNet review: 854552