Skip to Main Content

Bulletin of the American Mathematical Society

Published by the American Mathematical Society, the Bulletin of the American Mathematical Society (BULL) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.47.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A weak Ramanujan conjecture for generic cuspidal spectrum of quasi-split groups
HTML articles powered by AMS MathViewer

by Freydoon Shahidi PDF
Bull. Amer. Math. Soc. 15 (1986), 195-200
References
  • I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
  • A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR 546608
  • D. Flath, Decomposition of representations into tensor products, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 179–183. MR 546596
  • Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066, DOI 10.24033/asens.1355
  • R. Howe and I. I. Piatetski-Shapiro, A counterexample to the “generalized Ramanujan conjecture” for (quasi-) split groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 315–322. MR 546605
  • Hervé Jacquet, On the residual spectrum of $\textrm {GL}(n)$, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 185–208. MR 748508, DOI 10.1007/BFb0073148
  • H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
  • Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181, DOI 10.1007/BFb0079929
  • Robert P. Langlands, Euler products, Yale Mathematical Monographs, vol. 1, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. MR 0419366
  • R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 18–61. MR 0302614
  • R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 205–246. MR 546619
  • 12. C. J. Moreno and F. Shahidi, The L-functions L (s, Symm (r), π), Smith’s Memorial Volume, Canad. Math. Bull. 28 (1985), 405-410.
  • Ichirô Satake, Spherical functions and Ramanujan conjecture, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 258–264. MR 0211955
  • Freydoon Shahidi, Functional equation satisfied by certain $L$-functions, Compositio Math. 37 (1978), no. 2, 171–207. MR 498494
  • Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
  • Allan J. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR 544991
  • A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Similar Articles
Additional Information
  • Journal: Bull. Amer. Math. Soc. 15 (1986), 195-200
  • MSC (1985): Primary 10D40, 12A70, 22E55; Secondary 22E35
  • DOI: https://doi.org/10.1090/S0273-0979-1986-15470-4
  • MathSciNet review: 854553