## The cyclic homology and $K$-theory of curves

HTML articles powered by AMS MathViewer

## References

- Edward D. Davis,
*On the geometric interpretation of seminormality*, Proc. Amer. Math. Soc.**68**(1978), no. 1, 1–5. MR**453748**, DOI 10.1090/S0002-9939-1978-0453748-5 - Thomas G. Goodwillie,
*Cyclic homology, derivations, and the free loopspace*, Topology**24**(1985), no. 2, 187–215. MR**793184**, DOI 10.1016/0040-9383(85)90055-2 - Jean-Louis Loday,
*Symboles en $K$-théorie algébrique supérieure*, C. R. Acad. Sci. Paris Sér. I Math.**292**(1981), no. 18, 863–866 (French, with English summary). MR**623517** - Mark I. Krusemeyer,
*Fundamental groups, algebraic $K$-theory, and a problem of Abhyankar*, Invent. Math.**19**(1973), 15–47. MR**335522**, DOI 10.1007/BF01418849
[OW] C. Ogle and C. Weibel, Relative algebraic K-theory and cyclic homology (in preparation).
- Leslie G. Roberts,
*The $K$-theory of some reducible affine curves: a combinatorial approach*, Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976, pp. 44–59. MR**0485869** - Charles A. Weibel,
*$K$-theory and analytic isomorphisms*, Invent. Math.**61**(1980), no. 2, 177–197. MR**590161**, DOI 10.1007/BF01390120 - Charles A. Weibel,
*Nil $K$-theory maps to cyclic homology*, Trans. Amer. Math. Soc.**303**(1987), no. 2, 541–558. MR**902784**, DOI 10.1090/S0002-9947-1987-0902784-0 - C. A. Weibel,
*Nilpotence and $K$-theory*, J. Algebra**61**(1979), no. 2, 298–307. MR**559841**, DOI 10.1016/0021-8693(79)90281-3

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**15**(1986), 205-208 - MSC (1985): Primary 14F15, 18F25; Secondary 19E08, 19D25
- DOI: https://doi.org/10.1090/S0273-0979-1986-15474-1
- MathSciNet review: 854555