The cyclic homology and $K$-theory of curves
HTML articles powered by AMS MathViewer
References
- Edward D. Davis, On the geometric interpretation of seminormality, Proc. Amer. Math. Soc. 68 (1978), no. 1, 1–5. MR 453748, DOI 10.1090/S0002-9939-1978-0453748-5
- Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215. MR 793184, DOI 10.1016/0040-9383(85)90055-2
- Jean-Louis Loday, Symboles en $K$-théorie algébrique supérieure, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 18, 863–866 (French, with English summary). MR 623517
- Mark I. Krusemeyer, Fundamental groups, algebraic $K$-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15–47. MR 335522, DOI 10.1007/BF01418849 [OW] C. Ogle and C. Weibel, Relative algebraic K-theory and cyclic homology (in preparation).
- Leslie G. Roberts, The $K$-theory of some reducible affine curves: a combinatorial approach, Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976, pp. 44–59. MR 0485869
- Charles A. Weibel, $K$-theory and analytic isomorphisms, Invent. Math. 61 (1980), no. 2, 177–197. MR 590161, DOI 10.1007/BF01390120
- Charles A. Weibel, Nil $K$-theory maps to cyclic homology, Trans. Amer. Math. Soc. 303 (1987), no. 2, 541–558. MR 902784, DOI 10.1090/S0002-9947-1987-0902784-0
- C. A. Weibel, Nilpotence and $K$-theory, J. Algebra 61 (1979), no. 2, 298–307. MR 559841, DOI 10.1016/0021-8693(79)90281-3
Additional Information
- Journal: Bull. Amer. Math. Soc. 15 (1986), 205-208
- MSC (1985): Primary 14F15, 18F25; Secondary 19E08, 19D25
- DOI: https://doi.org/10.1090/S0273-0979-1986-15474-1
- MathSciNet review: 854555