## Freud’s conjecture for exponential weights

HTML articles powered by AMS MathViewer

- by D. S. Lubinsky, H. N. Mhaskar and E. B. Saff PDF
- Bull. Amer. Math. Soc.
**15**(1986), 217-221

## References

- D. Bessis, C. Itzykson, and J. B. Zuber,
*Quantum field theory techniques in graphical enumeration*, Adv. in Appl. Math.**1**(1980), no. 2, 109–157. MR**603127**, DOI 10.1016/0196-8858(80)90008-1 - Géza Freud,
*On the coefficients in the recursion formulae of orthogonal polynomials*, Proc. Roy. Irish Acad. Sect. A**76**(1976), no. 1, 1–6. MR**419895**
3. A. Knopfmacher, D. S. Lubinsky, and P. Nevai, Freud’s conjecture and approximation of reciprocals of weights by polynomials (manuscript).
- D. S. Lubinsky,
*Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives*, J. Approx. Theory**46**(1986), no. 3, 297–313. MR**840397**, DOI 10.1016/0021-9045(86)90067-5 - D. S. Lubinsky,
*Even entire functions absolutely monotone in $[0,\infty )$ and weights on the whole real line*, Orthogonal polynomials and applications (Bar-le-Duc, 1984) Lecture Notes in Math., vol. 1171, Springer, Berlin, 1985, pp. 221–229. MR**838987**, DOI 10.1007/BFb0076547
6. D. S. Lubinsky and E. B. Saff, Uniform and mean approximation by certain weighted polynomials, with applications (manuscript).
7. D. S. Lubinsky, H. N. Mhaskar, and E. B. Saff, A proof of Freud’s Conjecture for exponential weights (manuscript).
8. Al. Magnus, A proof of Freud’s Conjecture about orthogonal polynomials related to |x| exp (-x), Orthogonal Polynomials and Their Applications (C. Brezinski et al., eds.) Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1986.
- Alphonse P. Magnus,
*On Freud’s equations for exponential weights*, J. Approx. Theory**46**(1986), no. 1, 65–99. Papers dedicated to the memory of Géza Freud. MR**835728**, DOI 10.1016/0021-9045(86)90088-2 - Attila Máté, Paul Nevai, and Vilmos Totik,
*Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle*, Constr. Approx.**1**(1985), no. 1, 63–69. MR**766095**, DOI 10.1007/BF01890022 - Attila Máté, Paul Nevai, and Thomas Zaslavsky,
*Asymptotic expansions of ratios of coefficients of orthogonal polynomials with exponential weights*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 495–505. MR**768722**, DOI 10.1090/S0002-9947-1985-0768722-7 - H. N. Mhaskar and E. B. Saff,
*Extremal problems for polynomials with exponential weights*, Trans. Amer. Math. Soc.**285**(1984), no. 1, 203–234. MR**748838**, DOI 10.1090/S0002-9947-1984-0748838-0 - H. N. Mhaskar and E. B. Saff,
*Weighted polynomials on finite and infinite intervals: a unified approach*, Bull. Amer. Math. Soc. (N.S.)**11**(1984), no. 2, 351–354. MR**752796**, DOI 10.1090/S0273-0979-1984-15303-5 - H. N. Mhaskar and E. B. Saff,
*Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials)*, Constr. Approx.**1**(1985), no. 1, 71–91. MR**766096**, DOI 10.1007/BF01890023
15. H. N. Mhaskar and E. B. Saff, Where does the L? (manuscript).
16. P. Nevai, Geza Freud, Christoffel functions and orthogonal polynomials (A case study), J. Approximation Theory (to appear).
- D. G. Pettifor and D. L. Weaire (eds.),
*The recursion method and its applications*, Springer Series in Solid-State Sciences, vol. 58, Springer-Verlag, Berlin, 1985. MR**798478**, DOI 10.1007/978-3-642-82444-9 - E. B. Saff,
*Incomplete and orthogonal polynomials*, Approximation theory, IV (College Station, Tex., 1983) Academic Press, New York, 1983, pp. 219–256. MR**754347**

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**15**(1986), 217-221 - MSC (1985): Primary 42C05; Secondary 33A65, 41A10
- DOI: https://doi.org/10.1090/S0273-0979-1986-15480-7
- MathSciNet review: 854558