The trace formula for vector bundles
HTML articles powered by AMS MathViewer
- by V. Guillemin and A. Uribe PDF
- Bull. Amer. Math. Soc. 15 (1986), 222-224
References
- J. Chazarain, Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24 (1974), 65–82 (French). MR 343320, DOI 10.1007/BF01418788
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic geodesics, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 205–209. MR 0423438
- H. Hogreve, J. Potthoff, and R. Schrader, Classical limits for quantum particles in external Yang-Mills potentials, Comm. Math. Phys. 91 (1983), no. 4, 573–598. MR 727204, DOI 10.1007/BF01206024
- Robert Schrader and Michael E. Taylor, Small $\hbar$ asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials, Comm. Math. Phys. 92 (1984), no. 4, 555–594. MR 736411, DOI 10.1007/BF01215284
- Shlomo Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 12, 5253–5254. MR 458486, DOI 10.1073/pnas.74.12.5253
- A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1977/78), no. 5, 417–420. MR 507025, DOI 10.1007/BF00400169
Additional Information
- Journal: Bull. Amer. Math. Soc. 15 (1986), 222-224
- MSC (1980): Primary 58G25
- DOI: https://doi.org/10.1090/S0273-0979-1986-15482-0
- MathSciNet review: 854559